OpenLibm/slatec/hqr.f

246 lines
7.9 KiB
FortranFixed
Raw Normal View History

*DECK HQR
SUBROUTINE HQR (NM, N, LOW, IGH, H, WR, WI, IERR)
C***BEGIN PROLOGUE HQR
C***PURPOSE Compute the eigenvalues of a real upper Hessenberg matrix
C using the QR method.
C***LIBRARY SLATEC (EISPACK)
C***CATEGORY D4C2B
C***TYPE SINGLE PRECISION (HQR-S, COMQR-C)
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
C***AUTHOR Smith, B. T., et al.
C***DESCRIPTION
C
C This subroutine is a translation of the ALGOL procedure HQR,
C NUM. MATH. 14, 219-231(1970) by Martin, Peters, and Wilkinson.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 359-371(1971).
C
C This subroutine finds the eigenvalues of a REAL
C UPPER Hessenberg matrix by the QR method.
C
C On INPUT
C
C NM must be set to the row dimension of the two-dimensional
C array parameter, H, as declared in the calling program
C dimension statement. NM is an INTEGER variable.
C
C N is the order of the matrix H. N is an INTEGER variable.
C N must be less than or equal to NM.
C
C LOW and IGH are two INTEGER variables determined by the
C balancing subroutine BALANC. If BALANC has not been
C used, set LOW=1 and IGH equal to the order of the matrix, N.
C
C H contains the upper Hessenberg matrix. Information about
C the transformations used in the reduction to Hessenberg
C form by ELMHES or ORTHES, if performed, is stored
C in the remaining triangle under the Hessenberg matrix.
C H is a two-dimensional REAL array, dimensioned H(NM,N).
C
C On OUTPUT
C
C H has been destroyed. Therefore, it must be saved before
C calling HQR if subsequent calculation and back
C transformation of eigenvectors is to be performed.
C
C WR and WI contain the real and imaginary parts, respectively,
C of the eigenvalues. The eigenvalues are unordered except
C that complex conjugate pairs of values appear consecutively
C with the eigenvalue having the positive imaginary part first.
C If an error exit is made, the eigenvalues should be correct
C for indices IERR+1, IERR+2, ..., N. WR and WI are one-
C dimensional REAL arrays, dimensioned WR(N) and WI(N).
C
C IERR is an INTEGER flag set to
C Zero for normal return,
C J if the J-th eigenvalue has not been
C determined after a total of 30*N iterations.
C The eigenvalues should be correct for indices
C IERR+1, IERR+2, ..., N.
C
C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C ------------------------------------------------------------------
C
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C system Routines - EISPACK Guide, Springer-Verlag,
C 1976.
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 760101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE HQR
C
INTEGER I,J,K,L,M,N,EN,LL,MM,NA,NM,IGH,ITN,ITS,LOW,MP2,ENM2,IERR
REAL H(NM,*),WR(*),WI(*)
REAL P,Q,R,S,T,W,X,Y,ZZ,NORM,S1,S2
LOGICAL NOTLAS
C
C***FIRST EXECUTABLE STATEMENT HQR
IERR = 0
NORM = 0.0E0
K = 1
C .......... STORE ROOTS ISOLATED BY BALANC
C AND COMPUTE MATRIX NORM ..........
DO 50 I = 1, N
C
DO 40 J = K, N
40 NORM = NORM + ABS(H(I,J))
C
K = I
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 50
WR(I) = H(I,I)
WI(I) = 0.0E0
50 CONTINUE
C
EN = IGH
T = 0.0E0
ITN = 30*N
C .......... SEARCH FOR NEXT EIGENVALUES ..........
60 IF (EN .LT. LOW) GO TO 1001
ITS = 0
NA = EN - 1
ENM2 = NA - 1
C .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
C FOR L=EN STEP -1 UNTIL LOW DO -- ..........
70 DO 80 LL = LOW, EN
L = EN + LOW - LL
IF (L .EQ. LOW) GO TO 100
S = ABS(H(L-1,L-1)) + ABS(H(L,L))
IF (S .EQ. 0.0E0) S = NORM
S2 = S + ABS(H(L,L-1))
IF (S2 .EQ. S) GO TO 100
80 CONTINUE
C .......... FORM SHIFT ..........
100 X = H(EN,EN)
IF (L .EQ. EN) GO TO 270
Y = H(NA,NA)
W = H(EN,NA) * H(NA,EN)
IF (L .EQ. NA) GO TO 280
IF (ITN .EQ. 0) GO TO 1000
IF (ITS .NE. 10 .AND. ITS .NE. 20) GO TO 130
C .......... FORM EXCEPTIONAL SHIFT ..........
T = T + X
C
DO 120 I = LOW, EN
120 H(I,I) = H(I,I) - X
C
S = ABS(H(EN,NA)) + ABS(H(NA,ENM2))
X = 0.75E0 * S
Y = X
W = -0.4375E0 * S * S
130 ITS = ITS + 1
ITN = ITN - 1
C .......... LOOK FOR TWO CONSECUTIVE SMALL
C SUB-DIAGONAL ELEMENTS.
C FOR M=EN-2 STEP -1 UNTIL L DO -- ..........
DO 140 MM = L, ENM2
M = ENM2 + L - MM
ZZ = H(M,M)
R = X - ZZ
S = Y - ZZ
P = (R * S - W) / H(M+1,M) + H(M,M+1)
Q = H(M+1,M+1) - ZZ - R - S
R = H(M+2,M+1)
S = ABS(P) + ABS(Q) + ABS(R)
P = P / S
Q = Q / S
R = R / S
IF (M .EQ. L) GO TO 150
S1 = ABS(P) * (ABS(H(M-1,M-1)) + ABS(ZZ) + ABS(H(M+1,M+1)))
S2 = S1 + ABS(H(M,M-1)) * (ABS(Q) + ABS(R))
IF (S2 .EQ. S1) GO TO 150
140 CONTINUE
C
150 MP2 = M + 2
C
DO 160 I = MP2, EN
H(I,I-2) = 0.0E0
IF (I .EQ. MP2) GO TO 160
H(I,I-3) = 0.0E0
160 CONTINUE
C .......... DOUBLE QR STEP INVOLVING ROWS L TO EN AND
C COLUMNS M TO EN ..........
DO 260 K = M, NA
NOTLAS = K .NE. NA
IF (K .EQ. M) GO TO 170
P = H(K,K-1)
Q = H(K+1,K-1)
R = 0.0E0
IF (NOTLAS) R = H(K+2,K-1)
X = ABS(P) + ABS(Q) + ABS(R)
IF (X .EQ. 0.0E0) GO TO 260
P = P / X
Q = Q / X
R = R / X
170 S = SIGN(SQRT(P*P+Q*Q+R*R),P)
IF (K .EQ. M) GO TO 180
H(K,K-1) = -S * X
GO TO 190
180 IF (L .NE. M) H(K,K-1) = -H(K,K-1)
190 P = P + S
X = P / S
Y = Q / S
ZZ = R / S
Q = Q / P
R = R / P
C .......... ROW MODIFICATION ..........
DO 210 J = K, EN
P = H(K,J) + Q * H(K+1,J)
IF (.NOT. NOTLAS) GO TO 200
P = P + R * H(K+2,J)
H(K+2,J) = H(K+2,J) - P * ZZ
200 H(K+1,J) = H(K+1,J) - P * Y
H(K,J) = H(K,J) - P * X
210 CONTINUE
C
J = MIN(EN,K+3)
C .......... COLUMN MODIFICATION ..........
DO 230 I = L, J
P = X * H(I,K) + Y * H(I,K+1)
IF (.NOT. NOTLAS) GO TO 220
P = P + ZZ * H(I,K+2)
H(I,K+2) = H(I,K+2) - P * R
220 H(I,K+1) = H(I,K+1) - P * Q
H(I,K) = H(I,K) - P
230 CONTINUE
C
260 CONTINUE
C
GO TO 70
C .......... ONE ROOT FOUND ..........
270 WR(EN) = X + T
WI(EN) = 0.0E0
EN = NA
GO TO 60
C .......... TWO ROOTS FOUND ..........
280 P = (Y - X) / 2.0E0
Q = P * P + W
ZZ = SQRT(ABS(Q))
X = X + T
IF (Q .LT. 0.0E0) GO TO 320
C .......... REAL PAIR ..........
ZZ = P + SIGN(ZZ,P)
WR(NA) = X + ZZ
WR(EN) = WR(NA)
IF (ZZ .NE. 0.0E0) WR(EN) = X - W / ZZ
WI(NA) = 0.0E0
WI(EN) = 0.0E0
GO TO 330
C .......... COMPLEX PAIR ..........
320 WR(NA) = X + P
WR(EN) = X + P
WI(NA) = ZZ
WI(EN) = -ZZ
330 EN = ENM2
GO TO 60
C .......... SET ERROR -- NO CONVERGENCE TO AN
C EIGENVALUE AFTER 30*N ITERATIONS ..........
1000 IERR = EN
1001 RETURN
END