mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
261 lines
6.9 KiB
FortranFixed
261 lines
6.9 KiB
FortranFixed
|
*DECK MGSBV
|
||
|
SUBROUTINE MGSBV (M, N, A, IA, NIV, IFLAG, S, P, IP, INHOMO, V, W,
|
||
|
+ WCND)
|
||
|
C***BEGIN PROLOGUE MGSBV
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to BVSUP
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE SINGLE PRECISION (MGSBV-S, DMGSBV-D)
|
||
|
C***AUTHOR Watts, H. A., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C **********************************************************************
|
||
|
C Orthogonalize a set of N real vectors and determine their rank
|
||
|
C
|
||
|
C **********************************************************************
|
||
|
C INPUT
|
||
|
C **********************************************************************
|
||
|
C M = Dimension of vectors
|
||
|
C N = No. of vectors
|
||
|
C A = Array whose first N cols contain the vectors
|
||
|
C IA = First dimension of array A (col length)
|
||
|
C NIV = Number of independent vectors needed
|
||
|
C INHOMO = 1 Corresponds to having a non-zero particular solution
|
||
|
C V = Particular solution vector (not included in the pivoting)
|
||
|
C INDPVT = 1 Means pivoting will not be used
|
||
|
C
|
||
|
C **********************************************************************
|
||
|
C OUTPUT
|
||
|
C **********************************************************************
|
||
|
C NIV = No. of linear independent vectors in input set
|
||
|
C A = Matrix whose first NIV cols. contain NIV orthogonal vectors
|
||
|
C which span the vector space determined by the input vectors
|
||
|
C IFLAG
|
||
|
C = 0 success
|
||
|
C = 1 incorrect input
|
||
|
C = 2 rank of new vectors less than N
|
||
|
C P = Decomposition matrix. P is upper triangular and
|
||
|
C (old vectors) = (new vectors) * P.
|
||
|
C The old vectors will be reordered due to pivoting
|
||
|
C The dimension of p must be .GE. N*(N+1)/2.
|
||
|
C ( N*(2*N+1) when N .NE. NFCC )
|
||
|
C IP = Pivoting vector. The dimension of IP must be .GE. N.
|
||
|
C ( 2*N when N .NE. NFCC )
|
||
|
C S = Square of norms of incoming vectors
|
||
|
C V = Vector which is orthogonal to the vectors of A
|
||
|
C W = Orthogonalization information for the vector V
|
||
|
C WCND = Worst case (smallest) norm decrement value of the
|
||
|
C vectors being orthogonalized (represents a test
|
||
|
C for linear dependence of the vectors)
|
||
|
C **********************************************************************
|
||
|
C
|
||
|
C***SEE ALSO BVSUP
|
||
|
C***ROUTINES CALLED PRVEC, SDOT
|
||
|
C***COMMON BLOCKS ML18JR, ML5MCO
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 750601 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890921 Realigned order of variables in certain COMMON blocks.
|
||
|
C (WRB)
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900328 Added TYPE section. (WRB)
|
||
|
C 910722 Updated AUTHOR section. (ALS)
|
||
|
C***END PROLOGUE MGSBV
|
||
|
C
|
||
|
DIMENSION A(IA,*),V(*),W(*),P(*),IP(*),S(*)
|
||
|
C
|
||
|
C
|
||
|
COMMON /ML18JR/ AE,RE,TOL,NXPTS,NIC,NOPG,MXNON,NDISK,NTAPE,NEQ,
|
||
|
1 INDPVT,INTEG,NPS,NTP,NEQIVP,NUMORT,NFCC,
|
||
|
2 ICOCO
|
||
|
C
|
||
|
COMMON /ML5MCO/ URO,SRU,EPS,SQOVFL,TWOU,FOURU,LPAR
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT MGSBV
|
||
|
IF(M .GT. 0 .AND. N .GT. 0 .AND. IA .GE. M) GO TO 10
|
||
|
IFLAG=1
|
||
|
RETURN
|
||
|
C
|
||
|
10 JP=0
|
||
|
IFLAG=0
|
||
|
NP1=N+1
|
||
|
Y=0.0
|
||
|
M2=M/2
|
||
|
C
|
||
|
C CALCULATE SQUARE OF NORMS OF INCOMING VECTORS AND SEARCH FOR
|
||
|
C VECTOR WITH LARGEST MAGNITUDE
|
||
|
C
|
||
|
J=0
|
||
|
DO 30 I=1,N
|
||
|
VL=SDOT(M,A(1,I),1,A(1,I),1)
|
||
|
S(I)=VL
|
||
|
IF (N .EQ. NFCC) GO TO 25
|
||
|
J=2*I-1
|
||
|
P(J)=VL
|
||
|
IP(J)=J
|
||
|
25 J=J+1
|
||
|
P(J)=VL
|
||
|
IP(J)=J
|
||
|
IF(VL .LE. Y) GO TO 30
|
||
|
Y=VL
|
||
|
IX=I
|
||
|
30 CONTINUE
|
||
|
IF (INDPVT .NE. 1) GO TO 33
|
||
|
IX=1
|
||
|
Y=P(1)
|
||
|
33 LIX=IX
|
||
|
IF (N .NE. NFCC) LIX=2*IX-1
|
||
|
P(LIX)=P(1)
|
||
|
S(NP1)=0.
|
||
|
IF (INHOMO .EQ. 1) S(NP1)=SDOT(M,V,1,V,1)
|
||
|
WCND=1.
|
||
|
NIVN=NIV
|
||
|
NIV=0
|
||
|
C
|
||
|
IF(Y .EQ. 0.0) GO TO 170
|
||
|
C **********************************************************************
|
||
|
DO 140 NR=1,N
|
||
|
IF (NIVN .EQ. NIV) GO TO 150
|
||
|
NIV=NR
|
||
|
IF(IX .EQ. NR) GO TO 80
|
||
|
C
|
||
|
C PIVOTING OF COLUMNS OF P MATRIX
|
||
|
C
|
||
|
NN=N
|
||
|
LIX=IX
|
||
|
LR=NR
|
||
|
IF (N .EQ. NFCC) GO TO 40
|
||
|
NN=NFCC
|
||
|
LIX=2*IX-1
|
||
|
LR=2*NR-1
|
||
|
40 IF(NR .EQ. 1) GO TO 60
|
||
|
KD=LIX-LR
|
||
|
KJ=LR
|
||
|
NRM1=LR-1
|
||
|
DO 50 J=1,NRM1
|
||
|
PSAVE=P(KJ)
|
||
|
JK=KJ+KD
|
||
|
P(KJ)=P(JK)
|
||
|
P(JK)=PSAVE
|
||
|
50 KJ=KJ+NN-J
|
||
|
JY=JK+NMNR
|
||
|
JZ=JY-KD
|
||
|
P(JY)=P(JZ)
|
||
|
60 IZ=IP(LIX)
|
||
|
IP(LIX)=IP(LR)
|
||
|
IP(LR)=IZ
|
||
|
SV=S(IX)
|
||
|
S(IX)=S(NR)
|
||
|
S(NR)=SV
|
||
|
IF (N .EQ. NFCC) GO TO 69
|
||
|
IF (NR .EQ. 1) GO TO 67
|
||
|
KJ=LR+1
|
||
|
DO 65 K=1,NRM1
|
||
|
PSAVE=P(KJ)
|
||
|
JK=KJ+KD
|
||
|
P(KJ)=P(JK)
|
||
|
P(JK)=PSAVE
|
||
|
65 KJ=KJ+NFCC-K
|
||
|
67 IZ=IP(LIX+1)
|
||
|
IP(LIX+1)=IP(LR+1)
|
||
|
IP(LR+1)=IZ
|
||
|
C
|
||
|
C PIVOTING OF COLUMNS OF VECTORS
|
||
|
C
|
||
|
69 DO 70 L=1,M
|
||
|
T=A(L,IX)
|
||
|
A(L,IX)=A(L,NR)
|
||
|
70 A(L,NR)=T
|
||
|
C
|
||
|
C CALCULATE P(NR,NR) AS NORM SQUARED OF PIVOTAL VECTOR
|
||
|
C
|
||
|
80 JP=JP+1
|
||
|
P(JP)=Y
|
||
|
RY=1.0/Y
|
||
|
NMNR=N-NR
|
||
|
IF (N .EQ. NFCC) GO TO 85
|
||
|
NMNR=NFCC-(2*NR-1)
|
||
|
JP=JP+1
|
||
|
P(JP)=0.
|
||
|
KP=JP+NMNR
|
||
|
P(KP)=Y
|
||
|
85 IF(NR .EQ. N .OR. NIVN .EQ. NIV) GO TO 125
|
||
|
C
|
||
|
C CALCULATE ORTHOGONAL PROJECTION VECTORS AND SEARCH FOR LARGEST NORM
|
||
|
C
|
||
|
Y=0.0
|
||
|
IP1=NR+1
|
||
|
IX=IP1
|
||
|
C ****************************************
|
||
|
DO 120 J=IP1,N
|
||
|
DOT=SDOT(M,A(1,NR),1,A(1,J),1)
|
||
|
JP=JP+1
|
||
|
JQ=JP+NMNR
|
||
|
IF (N .NE. NFCC) JQ=JQ+NMNR-1
|
||
|
P(JQ)=P(JP)-DOT*(DOT*RY)
|
||
|
P(JP)=DOT*RY
|
||
|
DO 90 I = 1,M
|
||
|
90 A(I,J)=A(I,J)-P(JP)*A(I,NR)
|
||
|
IF (N .EQ. NFCC) GO TO 99
|
||
|
KP=JP+NMNR
|
||
|
JP=JP+1
|
||
|
PJP=RY*PRVEC(M,A(1,NR),A(1,J))
|
||
|
P(JP)=PJP
|
||
|
P(KP)=-PJP
|
||
|
KP=KP+1
|
||
|
P(KP)=RY*DOT
|
||
|
DO 95 K=1,M2
|
||
|
L=M2+K
|
||
|
A(K,J)=A(K,J)-PJP*A(L,NR)
|
||
|
95 A(L,J)=A(L,J)+PJP*A(K,NR)
|
||
|
P(JQ)=P(JQ)-PJP*(PJP/RY)
|
||
|
C
|
||
|
C TEST FOR CANCELLATION IN RECURRENCE RELATION
|
||
|
C
|
||
|
99 IF(P(JQ) .GT. S(J)*SRU) GO TO 100
|
||
|
P(JQ)=SDOT(M,A(1,J),1,A(1,J),1)
|
||
|
100 IF(P(JQ) .LE. Y) GO TO 120
|
||
|
Y=P(JQ)
|
||
|
IX=J
|
||
|
120 CONTINUE
|
||
|
IF (N .NE. NFCC) JP=KP
|
||
|
C ****************************************
|
||
|
IF(INDPVT .EQ. 1) IX=IP1
|
||
|
C
|
||
|
C RECOMPUTE NORM SQUARED OF PIVOTAL VECTOR WITH SCALAR PRODUCT
|
||
|
C
|
||
|
Y=SDOT(M,A(1,IX),1,A(1,IX),1)
|
||
|
IF(Y .LE. EPS*S(IX)) GO TO 170
|
||
|
WCND=MIN(WCND,Y/S(IX))
|
||
|
C
|
||
|
C COMPUTE ORTHOGONAL PROJECTION OF PARTICULAR SOLUTION
|
||
|
C
|
||
|
125 IF(INHOMO .NE. 1) GO TO 140
|
||
|
LR=NR
|
||
|
IF (N .NE. NFCC) LR=2*NR-1
|
||
|
W(LR)=SDOT(M,A(1,NR),1,V,1)*RY
|
||
|
DO 130 I=1,M
|
||
|
130 V(I)=V(I)-W(LR)*A(I,NR)
|
||
|
IF (N .EQ. NFCC) GO TO 140
|
||
|
LR=2*NR
|
||
|
W(LR)=RY*PRVEC(M,V,A(1,NR))
|
||
|
DO 135 K=1,M2
|
||
|
L=M2+K
|
||
|
V(K)=V(K)+W(LR)*A(L,NR)
|
||
|
135 V(L)=V(L)-W(LR)*A(K,NR)
|
||
|
140 CONTINUE
|
||
|
C **********************************************************************
|
||
|
C
|
||
|
C TEST FOR LINEAR DEPENDENCE OF PARTICULAR SOLUTION
|
||
|
C
|
||
|
150 IF(INHOMO .NE. 1) RETURN
|
||
|
IF ((N .GT. 1) .AND. (S(NP1) .LT. 1.0)) RETURN
|
||
|
VNORM=SDOT(M,V,1,V,1)
|
||
|
IF (S(NP1) .NE. 0.) WCND=MIN(WCND,VNORM/S(NP1))
|
||
|
IF(VNORM .GE. EPS*S(NP1)) RETURN
|
||
|
170 IFLAG=2
|
||
|
WCND=EPS
|
||
|
RETURN
|
||
|
END
|