OpenLibm/slatec/orthes.f

134 lines
4.4 KiB
FortranFixed
Raw Normal View History

*DECK ORTHES
SUBROUTINE ORTHES (NM, N, LOW, IGH, A, ORT)
C***BEGIN PROLOGUE ORTHES
C***PURPOSE Reduce a real general matrix to upper Hessenberg form
C using orthogonal similarity transformations.
C***LIBRARY SLATEC (EISPACK)
C***CATEGORY D4C1B2
C***TYPE SINGLE PRECISION (ORTHES-S, CORTH-C)
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
C***AUTHOR Smith, B. T., et al.
C***DESCRIPTION
C
C This subroutine is a translation of the ALGOL procedure ORTHES,
C NUM. MATH. 12, 349-368(1968) by Martin and Wilkinson.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).
C
C Given a REAL GENERAL matrix, this subroutine
C reduces a submatrix situated in rows and columns
C LOW through IGH to upper Hessenberg form by
C orthogonal similarity transformations.
C
C On INPUT
C
C NM must be set to the row dimension of the two-dimensional
C array parameter, A, as declared in the calling program
C dimension statement. NM is an INTEGER variable.
C
C N is the order of the matrix A. N is an INTEGER variable.
C N must be less than or equal to NM.
C
C LOW and IGH are two INTEGER variables determined by the
C balancing subroutine BALANC. If BALANC has not been
C used, set LOW=1 and IGH equal to the order of the matrix, N.
C
C A contains the general matrix to be reduced to upper
C Hessenberg form. A is a two-dimensional REAL array,
C dimensioned A(NM,N).
C
C On OUTPUT
C
C A contains the upper Hessenberg matrix. Some information about
C the orthogonal transformations used in the reduction
C is stored in the remaining triangle under the Hessenberg
C matrix.
C
C ORT contains further information about the orthogonal trans-
C formations used in the reduction. Only elements LOW+1
C through IGH are used. ORT is a one-dimensional REAL array,
C dimensioned ORT(IGH).
C
C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C ------------------------------------------------------------------
C
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C system Routines - EISPACK Guide, Springer-Verlag,
C 1976.
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 760101 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE ORTHES
C
INTEGER I,J,M,N,II,JJ,LA,MP,NM,IGH,KP1,LOW
REAL A(NM,*),ORT(*)
REAL F,G,H,SCALE
C
C***FIRST EXECUTABLE STATEMENT ORTHES
LA = IGH - 1
KP1 = LOW + 1
IF (LA .LT. KP1) GO TO 200
C
DO 180 M = KP1, LA
H = 0.0E0
ORT(M) = 0.0E0
SCALE = 0.0E0
C .......... SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) ..........
DO 90 I = M, IGH
90 SCALE = SCALE + ABS(A(I,M-1))
C
IF (SCALE .EQ. 0.0E0) GO TO 180
MP = M + IGH
C .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
DO 100 II = M, IGH
I = MP - II
ORT(I) = A(I,M-1) / SCALE
H = H + ORT(I) * ORT(I)
100 CONTINUE
C
G = -SIGN(SQRT(H),ORT(M))
H = H - ORT(M) * G
ORT(M) = ORT(M) - G
C .......... FORM (I-(U*UT)/H) * A ..........
DO 130 J = M, N
F = 0.0E0
C .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
DO 110 II = M, IGH
I = MP - II
F = F + ORT(I) * A(I,J)
110 CONTINUE
C
F = F / H
C
DO 120 I = M, IGH
120 A(I,J) = A(I,J) - F * ORT(I)
C
130 CONTINUE
C .......... FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) ..........
DO 160 I = 1, IGH
F = 0.0E0
C .......... FOR J=IGH STEP -1 UNTIL M DO -- ..........
DO 140 JJ = M, IGH
J = MP - JJ
F = F + ORT(J) * A(I,J)
140 CONTINUE
C
F = F / H
C
DO 150 J = M, IGH
150 A(I,J) = A(I,J) - F * ORT(J)
C
160 CONTINUE
C
ORT(M) = SCALE * ORT(M)
A(M,M-1) = SCALE * G
180 CONTINUE
C
200 RETURN
END