mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
134 lines
4.4 KiB
FortranFixed
134 lines
4.4 KiB
FortranFixed
|
*DECK ORTHES
|
||
|
SUBROUTINE ORTHES (NM, N, LOW, IGH, A, ORT)
|
||
|
C***BEGIN PROLOGUE ORTHES
|
||
|
C***PURPOSE Reduce a real general matrix to upper Hessenberg form
|
||
|
C using orthogonal similarity transformations.
|
||
|
C***LIBRARY SLATEC (EISPACK)
|
||
|
C***CATEGORY D4C1B2
|
||
|
C***TYPE SINGLE PRECISION (ORTHES-S, CORTH-C)
|
||
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
||
|
C***AUTHOR Smith, B. T., et al.
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This subroutine is a translation of the ALGOL procedure ORTHES,
|
||
|
C NUM. MATH. 12, 349-368(1968) by Martin and Wilkinson.
|
||
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).
|
||
|
C
|
||
|
C Given a REAL GENERAL matrix, this subroutine
|
||
|
C reduces a submatrix situated in rows and columns
|
||
|
C LOW through IGH to upper Hessenberg form by
|
||
|
C orthogonal similarity transformations.
|
||
|
C
|
||
|
C On INPUT
|
||
|
C
|
||
|
C NM must be set to the row dimension of the two-dimensional
|
||
|
C array parameter, A, as declared in the calling program
|
||
|
C dimension statement. NM is an INTEGER variable.
|
||
|
C
|
||
|
C N is the order of the matrix A. N is an INTEGER variable.
|
||
|
C N must be less than or equal to NM.
|
||
|
C
|
||
|
C LOW and IGH are two INTEGER variables determined by the
|
||
|
C balancing subroutine BALANC. If BALANC has not been
|
||
|
C used, set LOW=1 and IGH equal to the order of the matrix, N.
|
||
|
C
|
||
|
C A contains the general matrix to be reduced to upper
|
||
|
C Hessenberg form. A is a two-dimensional REAL array,
|
||
|
C dimensioned A(NM,N).
|
||
|
C
|
||
|
C On OUTPUT
|
||
|
C
|
||
|
C A contains the upper Hessenberg matrix. Some information about
|
||
|
C the orthogonal transformations used in the reduction
|
||
|
C is stored in the remaining triangle under the Hessenberg
|
||
|
C matrix.
|
||
|
C
|
||
|
C ORT contains further information about the orthogonal trans-
|
||
|
C formations used in the reduction. Only elements LOW+1
|
||
|
C through IGH are used. ORT is a one-dimensional REAL array,
|
||
|
C dimensioned ORT(IGH).
|
||
|
C
|
||
|
C Questions and comments should be directed to B. S. Garbow,
|
||
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
||
|
C ------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
||
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
||
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
||
|
C 1976.
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 760101 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE ORTHES
|
||
|
C
|
||
|
INTEGER I,J,M,N,II,JJ,LA,MP,NM,IGH,KP1,LOW
|
||
|
REAL A(NM,*),ORT(*)
|
||
|
REAL F,G,H,SCALE
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT ORTHES
|
||
|
LA = IGH - 1
|
||
|
KP1 = LOW + 1
|
||
|
IF (LA .LT. KP1) GO TO 200
|
||
|
C
|
||
|
DO 180 M = KP1, LA
|
||
|
H = 0.0E0
|
||
|
ORT(M) = 0.0E0
|
||
|
SCALE = 0.0E0
|
||
|
C .......... SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) ..........
|
||
|
DO 90 I = M, IGH
|
||
|
90 SCALE = SCALE + ABS(A(I,M-1))
|
||
|
C
|
||
|
IF (SCALE .EQ. 0.0E0) GO TO 180
|
||
|
MP = M + IGH
|
||
|
C .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
|
||
|
DO 100 II = M, IGH
|
||
|
I = MP - II
|
||
|
ORT(I) = A(I,M-1) / SCALE
|
||
|
H = H + ORT(I) * ORT(I)
|
||
|
100 CONTINUE
|
||
|
C
|
||
|
G = -SIGN(SQRT(H),ORT(M))
|
||
|
H = H - ORT(M) * G
|
||
|
ORT(M) = ORT(M) - G
|
||
|
C .......... FORM (I-(U*UT)/H) * A ..........
|
||
|
DO 130 J = M, N
|
||
|
F = 0.0E0
|
||
|
C .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
|
||
|
DO 110 II = M, IGH
|
||
|
I = MP - II
|
||
|
F = F + ORT(I) * A(I,J)
|
||
|
110 CONTINUE
|
||
|
C
|
||
|
F = F / H
|
||
|
C
|
||
|
DO 120 I = M, IGH
|
||
|
120 A(I,J) = A(I,J) - F * ORT(I)
|
||
|
C
|
||
|
130 CONTINUE
|
||
|
C .......... FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) ..........
|
||
|
DO 160 I = 1, IGH
|
||
|
F = 0.0E0
|
||
|
C .......... FOR J=IGH STEP -1 UNTIL M DO -- ..........
|
||
|
DO 140 JJ = M, IGH
|
||
|
J = MP - JJ
|
||
|
F = F + ORT(J) * A(I,J)
|
||
|
140 CONTINUE
|
||
|
C
|
||
|
F = F / H
|
||
|
C
|
||
|
DO 150 J = M, IGH
|
||
|
150 A(I,J) = A(I,J) - F * ORT(J)
|
||
|
C
|
||
|
160 CONTINUE
|
||
|
C
|
||
|
ORT(M) = SCALE * ORT(M)
|
||
|
A(M,M-1) = SCALE * G
|
||
|
180 CONTINUE
|
||
|
C
|
||
|
200 RETURN
|
||
|
END
|