OpenLibm/slatec/orthor.f

186 lines
5.9 KiB
FortranFixed
Raw Normal View History

*DECK ORTHOR
SUBROUTINE ORTHOR (A, N, M, NRDA, IFLAG, IRANK, ISCALE, DIAG,
+ KPIVOT, SCALES, ROWS, RS)
C***BEGIN PROLOGUE ORTHOR
C***SUBSIDIARY
C***PURPOSE Subsidiary to BVSUP
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (ORTHOR-S, DORTHR-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C Reduction of the matrix A to lower triangular form by a sequence of
C orthogonal HOUSEHOLDER transformations post-multiplying A
C
C Modeled after the ALGOL codes in the articles in the REFERENCES
C section.
C
C **********************************************************************
C INPUT
C **********************************************************************
C
C A -- Contains the matrix to be decomposed, must be dimensioned
C NRDA by N
C N -- Number of rows in the matrix, N greater or equal to 1
C M -- Number of columns in the matrix, M greater or equal to N
C IFLAG -- Indicates the uncertainty in the matrix data
C = 0 when the data is to be treated as exact
C =-K when the data is assumed to be accurate to about
C K digits
C ISCALE -- Scaling indicator
C =-1 if the matrix is to be pre-scaled by
C columns when appropriate.
C Otherwise no scaling will be attempted
C NRDA -- Row dimension of A, NRDA greater or equal to N
C DIAG,KPIVOT,ROWS -- Arrays of length at least N used internally
C ,RS,SCALES (except for SCALES which is M)
C
C **********************************************************************
C OUTPUT
C **********************************************************************
C
C IFLAG - status indicator
C =1 for successful decomposition
C =2 if improper input is detected
C =3 if rank of the matrix is less than N
C A -- contains the reduced matrix in the strictly lower triangular
C part and transformation information
C IRANK -- contains the numerically determined matrix rank
C DIAG -- contains the diagonal elements of the reduced
C triangular matrix
C KPIVOT -- Contains the pivotal information, the column
C interchanges performed on the original matrix are
C recorded here.
C SCALES -- contains the column scaling parameters
C
C **********************************************************************
C
C***SEE ALSO BVSUP
C***REFERENCES G. Golub, Numerical methods for solving linear least
C squares problems, Numerische Mathematik 7, (1965),
C pp. 206-216.
C P. Businger and G. Golub, Linear least squares
C solutions by Householder transformations, Numerische
C Mathematik 7, (1965), pp. 269-276.
C***ROUTINES CALLED CSCALE, R1MACH, SDOT, XERMSG
C***REVISION HISTORY (YYMMDD)
C 750601 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900328 Added TYPE section. (WRB)
C 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE ORTHOR
DIMENSION A(NRDA,*),DIAG(*),KPIVOT(*),ROWS(*),RS(*),SCALES(*)
C
C END OF ABSTRACT
C
C **********************************************************************
C
C MACHINE PRECISION (COMPUTER UNIT ROUNDOFF VALUE) IS DEFINED
C BY THE FUNCTION R1MACH.
C
C **********************************************************************
C
C***FIRST EXECUTABLE STATEMENT ORTHOR
URO = R1MACH(4)
IF (M .GE. N .AND. N .GE. 1 .AND. NRDA .GE. N) GO TO 1
IFLAG=2
CALL XERMSG ('SLATEC', 'ORTHOR', 'INVALID INPUT PARAMETERS.', 2,
+ 1)
RETURN
C
1 ACC=10.*URO
IF (IFLAG .LT. 0) ACC=MAX(ACC,10.**IFLAG)
SRURO=SQRT(URO)
IFLAG=1
IRANK=N
C
C COMPUTE NORM**2 OF JTH ROW AND A MATRIX NORM
C
ANORM=0.
DO 2 J=1,N
KPIVOT(J)=J
ROWS(J)=SDOT(M,A(J,1),NRDA,A(J,1),NRDA)
RS(J)=ROWS(J)
ANORM=ANORM+ROWS(J)
2 CONTINUE
C
C PERFORM COLUMN SCALING ON A WHEN SPECIFIED
C
CALL CSCALE(A,NRDA,N,M,SCALES,DUM,ROWS,RS,ANORM,SCALES,ISCALE,1)
C
ANORM=SQRT(ANORM)
C
C
C CONSTRUCTION OF LOWER TRIANGULAR MATRIX AND RECORDING OF
C ORTHOGONAL TRANSFORMATIONS
C
C
DO 50 K=1,N
MK=M-K+1
IF (K .EQ. N) GO TO 25
KP=K+1
C
C SEARCHING FOR PIVOTAL ROW
C
DO 10 J=K,N
IF (ROWS(J) .GE. SRURO*RS(J)) GO TO 5
ROWS(J)=SDOT(MK,A(J,K),NRDA,A(J,K),NRDA)
RS(J)=ROWS(J)
5 IF (J .EQ. K) GO TO 7
IF (SIGMA .GE. 0.99*ROWS(J)) GO TO 10
7 SIGMA=ROWS(J)
JROW=J
10 CONTINUE
IF (JROW .EQ. K) GO TO 25
C
C PERFORM ROW INTERCHANGE
C
L=KPIVOT(K)
KPIVOT(K)=KPIVOT(JROW)
KPIVOT(JROW)=L
ROWS(JROW)=ROWS(K)
ROWS(K)=SIGMA
RSS=RS(K)
RS(K)=RS(JROW)
RS(JROW)=RSS
DO 20 L=1,M
ASAVE=A(K,L)
A(K,L)=A(JROW,L)
20 A(JROW,L)=ASAVE
C
C CHECK RANK OF THE MATRIX
C
25 SIG=SDOT(MK,A(K,K),NRDA,A(K,K),NRDA)
DIAGK=SQRT(SIG)
IF (DIAGK .GT. ACC*ANORM) GO TO 30
C
C RANK DEFICIENT PROBLEM
IFLAG=3
IRANK=K-1
CALL XERMSG ('SLATEC', 'ORTHOR',
+ 'RANK OF MATRIX IS LESS THAN THE NUMBER OF ROWS.', 1, 1)
RETURN
C
C CONSTRUCT AND APPLY TRANSFORMATION TO MATRIX A
C
30 AKK=A(K,K)
IF (AKK .GT. 0.) DIAGK=-DIAGK
DIAG(K)=DIAGK
A(K,K)=AKK-DIAGK
IF (K .EQ. N) GO TO 50
SAD=DIAGK*AKK-SIG
DO 40 J=KP,N
AS=SDOT(MK,A(K,K),NRDA,A(J,K),NRDA)/SAD
DO 35 L=K,M
35 A(J,L)=A(J,L)+AS*A(K,L)
40 ROWS(J)=ROWS(J)-A(J,K)**2
50 CONTINUE
C
C
RETURN
END