mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
247 lines
8.3 KiB
FortranFixed
247 lines
8.3 KiB
FortranFixed
|
*DECK PCHCE
|
||
|
SUBROUTINE PCHCE (IC, VC, N, X, H, SLOPE, D, INCFD, IERR)
|
||
|
C***BEGIN PROLOGUE PCHCE
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Set boundary conditions for PCHIC
|
||
|
C***LIBRARY SLATEC (PCHIP)
|
||
|
C***TYPE SINGLE PRECISION (PCHCE-S, DPCHCE-D)
|
||
|
C***AUTHOR Fritsch, F. N., (LLNL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C PCHCE: PCHIC End Derivative Setter.
|
||
|
C
|
||
|
C Called by PCHIC to set end derivatives as requested by the user.
|
||
|
C It must be called after interior derivative values have been set.
|
||
|
C -----
|
||
|
C
|
||
|
C To facilitate two-dimensional applications, includes an increment
|
||
|
C between successive values of the D-array.
|
||
|
C
|
||
|
C ----------------------------------------------------------------------
|
||
|
C
|
||
|
C Calling sequence:
|
||
|
C
|
||
|
C PARAMETER (INCFD = ...)
|
||
|
C INTEGER IC(2), N, IERR
|
||
|
C REAL VC(2), X(N), H(N), SLOPE(N), D(INCFD,N)
|
||
|
C
|
||
|
C CALL PCHCE (IC, VC, N, X, H, SLOPE, D, INCFD, IERR)
|
||
|
C
|
||
|
C Parameters:
|
||
|
C
|
||
|
C IC -- (input) integer array of length 2 specifying desired
|
||
|
C boundary conditions:
|
||
|
C IC(1) = IBEG, desired condition at beginning of data.
|
||
|
C IC(2) = IEND, desired condition at end of data.
|
||
|
C ( see prologue to PCHIC for details. )
|
||
|
C
|
||
|
C VC -- (input) real array of length 2 specifying desired boundary
|
||
|
C values. VC(1) need be set only if IC(1) = 2 or 3 .
|
||
|
C VC(2) need be set only if IC(2) = 2 or 3 .
|
||
|
C
|
||
|
C N -- (input) number of data points. (assumes N.GE.2)
|
||
|
C
|
||
|
C X -- (input) real array of independent variable values. (the
|
||
|
C elements of X are assumed to be strictly increasing.)
|
||
|
C
|
||
|
C H -- (input) real array of interval lengths.
|
||
|
C SLOPE -- (input) real array of data slopes.
|
||
|
C If the data are (X(I),Y(I)), I=1(1)N, then these inputs are:
|
||
|
C H(I) = X(I+1)-X(I),
|
||
|
C SLOPE(I) = (Y(I+1)-Y(I))/H(I), I=1(1)N-1.
|
||
|
C
|
||
|
C D -- (input) real array of derivative values at the data points.
|
||
|
C The value corresponding to X(I) must be stored in
|
||
|
C D(1+(I-1)*INCFD), I=1(1)N.
|
||
|
C (output) the value of D at X(1) and/or X(N) is changed, if
|
||
|
C necessary, to produce the requested boundary conditions.
|
||
|
C no other entries in D are changed.
|
||
|
C
|
||
|
C INCFD -- (input) increment between successive values in D.
|
||
|
C This argument is provided primarily for 2-D applications.
|
||
|
C
|
||
|
C IERR -- (output) error flag.
|
||
|
C Normal return:
|
||
|
C IERR = 0 (no errors).
|
||
|
C Warning errors:
|
||
|
C IERR = 1 if IBEG.LT.0 and D(1) had to be adjusted for
|
||
|
C monotonicity.
|
||
|
C IERR = 2 if IEND.LT.0 and D(1+(N-1)*INCFD) had to be
|
||
|
C adjusted for monotonicity.
|
||
|
C IERR = 3 if both of the above are true.
|
||
|
C
|
||
|
C -------
|
||
|
C WARNING: This routine does no validity-checking of arguments.
|
||
|
C -------
|
||
|
C
|
||
|
C Fortran intrinsics used: ABS.
|
||
|
C
|
||
|
C***SEE ALSO PCHIC
|
||
|
C***ROUTINES CALLED PCHDF, PCHST, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 820218 DATE WRITTEN
|
||
|
C 820805 Converted to SLATEC library version.
|
||
|
C 870707 Minor corrections made to prologue..
|
||
|
C 890411 Added SAVE statements (Vers. 3.2).
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900328 Added TYPE section. (WRB)
|
||
|
C 910408 Updated AUTHOR section in prologue. (WRB)
|
||
|
C 930503 Improved purpose. (FNF)
|
||
|
C***END PROLOGUE PCHCE
|
||
|
C
|
||
|
C Programming notes:
|
||
|
C 1. The function PCHST(ARG1,ARG2) is assumed to return zero if
|
||
|
C either argument is zero, +1 if they are of the same sign, and
|
||
|
C -1 if they are of opposite sign.
|
||
|
C 2. One could reduce the number of arguments and amount of local
|
||
|
C storage, at the expense of reduced code clarity, by passing in
|
||
|
C the array WK (rather than splitting it into H and SLOPE) and
|
||
|
C increasing its length enough to incorporate STEMP and XTEMP.
|
||
|
C 3. The two monotonicity checks only use the sufficient conditions.
|
||
|
C Thus, it is possible (but unlikely) for a boundary condition to
|
||
|
C be changed, even though the original interpolant was monotonic.
|
||
|
C (At least the result is a continuous function of the data.)
|
||
|
C**End
|
||
|
C
|
||
|
C DECLARE ARGUMENTS.
|
||
|
C
|
||
|
INTEGER IC(2), N, INCFD, IERR
|
||
|
REAL VC(2), X(*), H(*), SLOPE(*), D(INCFD,*)
|
||
|
C
|
||
|
C DECLARE LOCAL VARIABLES.
|
||
|
C
|
||
|
INTEGER IBEG, IEND, IERF, INDEX, J, K
|
||
|
REAL HALF, STEMP(3), THREE, TWO, XTEMP(4), ZERO
|
||
|
SAVE ZERO, HALF, TWO, THREE
|
||
|
REAL PCHDF, PCHST
|
||
|
C
|
||
|
C INITIALIZE.
|
||
|
C
|
||
|
DATA ZERO /0./, HALF /0.5/, TWO /2./, THREE /3./
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT PCHCE
|
||
|
IBEG = IC(1)
|
||
|
IEND = IC(2)
|
||
|
IERR = 0
|
||
|
C
|
||
|
C SET TO DEFAULT BOUNDARY CONDITIONS IF N IS TOO SMALL.
|
||
|
C
|
||
|
IF ( ABS(IBEG).GT.N ) IBEG = 0
|
||
|
IF ( ABS(IEND).GT.N ) IEND = 0
|
||
|
C
|
||
|
C TREAT BEGINNING BOUNDARY CONDITION.
|
||
|
C
|
||
|
IF (IBEG .EQ. 0) GO TO 2000
|
||
|
K = ABS(IBEG)
|
||
|
IF (K .EQ. 1) THEN
|
||
|
C BOUNDARY VALUE PROVIDED.
|
||
|
D(1,1) = VC(1)
|
||
|
ELSE IF (K .EQ. 2) THEN
|
||
|
C BOUNDARY SECOND DERIVATIVE PROVIDED.
|
||
|
D(1,1) = HALF*( (THREE*SLOPE(1) - D(1,2)) - HALF*VC(1)*H(1) )
|
||
|
ELSE IF (K .LT. 5) THEN
|
||
|
C USE K-POINT DERIVATIVE FORMULA.
|
||
|
C PICK UP FIRST K POINTS, IN REVERSE ORDER.
|
||
|
DO 10 J = 1, K
|
||
|
INDEX = K-J+1
|
||
|
C INDEX RUNS FROM K DOWN TO 1.
|
||
|
XTEMP(J) = X(INDEX)
|
||
|
IF (J .LT. K) STEMP(J) = SLOPE(INDEX-1)
|
||
|
10 CONTINUE
|
||
|
C -----------------------------
|
||
|
D(1,1) = PCHDF (K, XTEMP, STEMP, IERF)
|
||
|
C -----------------------------
|
||
|
IF (IERF .NE. 0) GO TO 5001
|
||
|
ELSE
|
||
|
C USE 'NOT A KNOT' CONDITION.
|
||
|
D(1,1) = ( THREE*(H(1)*SLOPE(2) + H(2)*SLOPE(1))
|
||
|
* - TWO*(H(1)+H(2))*D(1,2) - H(1)*D(1,3) ) / H(2)
|
||
|
ENDIF
|
||
|
C
|
||
|
IF (IBEG .GT. 0) GO TO 2000
|
||
|
C
|
||
|
C CHECK D(1,1) FOR COMPATIBILITY WITH MONOTONICITY.
|
||
|
C
|
||
|
IF (SLOPE(1) .EQ. ZERO) THEN
|
||
|
IF (D(1,1) .NE. ZERO) THEN
|
||
|
D(1,1) = ZERO
|
||
|
IERR = IERR + 1
|
||
|
ENDIF
|
||
|
ELSE IF ( PCHST(D(1,1),SLOPE(1)) .LT. ZERO) THEN
|
||
|
D(1,1) = ZERO
|
||
|
IERR = IERR + 1
|
||
|
ELSE IF ( ABS(D(1,1)) .GT. THREE*ABS(SLOPE(1)) ) THEN
|
||
|
D(1,1) = THREE*SLOPE(1)
|
||
|
IERR = IERR + 1
|
||
|
ENDIF
|
||
|
C
|
||
|
C TREAT END BOUNDARY CONDITION.
|
||
|
C
|
||
|
2000 CONTINUE
|
||
|
IF (IEND .EQ. 0) GO TO 5000
|
||
|
K = ABS(IEND)
|
||
|
IF (K .EQ. 1) THEN
|
||
|
C BOUNDARY VALUE PROVIDED.
|
||
|
D(1,N) = VC(2)
|
||
|
ELSE IF (K .EQ. 2) THEN
|
||
|
C BOUNDARY SECOND DERIVATIVE PROVIDED.
|
||
|
D(1,N) = HALF*( (THREE*SLOPE(N-1) - D(1,N-1)) +
|
||
|
* HALF*VC(2)*H(N-1) )
|
||
|
ELSE IF (K .LT. 5) THEN
|
||
|
C USE K-POINT DERIVATIVE FORMULA.
|
||
|
C PICK UP LAST K POINTS.
|
||
|
DO 2010 J = 1, K
|
||
|
INDEX = N-K+J
|
||
|
C INDEX RUNS FROM N+1-K UP TO N.
|
||
|
XTEMP(J) = X(INDEX)
|
||
|
IF (J .LT. K) STEMP(J) = SLOPE(INDEX)
|
||
|
2010 CONTINUE
|
||
|
C -----------------------------
|
||
|
D(1,N) = PCHDF (K, XTEMP, STEMP, IERF)
|
||
|
C -----------------------------
|
||
|
IF (IERF .NE. 0) GO TO 5001
|
||
|
ELSE
|
||
|
C USE 'NOT A KNOT' CONDITION.
|
||
|
D(1,N) = ( THREE*(H(N-1)*SLOPE(N-2) + H(N-2)*SLOPE(N-1))
|
||
|
* - TWO*(H(N-1)+H(N-2))*D(1,N-1) - H(N-1)*D(1,N-2) )
|
||
|
* / H(N-2)
|
||
|
ENDIF
|
||
|
C
|
||
|
IF (IEND .GT. 0) GO TO 5000
|
||
|
C
|
||
|
C CHECK D(1,N) FOR COMPATIBILITY WITH MONOTONICITY.
|
||
|
C
|
||
|
IF (SLOPE(N-1) .EQ. ZERO) THEN
|
||
|
IF (D(1,N) .NE. ZERO) THEN
|
||
|
D(1,N) = ZERO
|
||
|
IERR = IERR + 2
|
||
|
ENDIF
|
||
|
ELSE IF ( PCHST(D(1,N),SLOPE(N-1)) .LT. ZERO) THEN
|
||
|
D(1,N) = ZERO
|
||
|
IERR = IERR + 2
|
||
|
ELSE IF ( ABS(D(1,N)) .GT. THREE*ABS(SLOPE(N-1)) ) THEN
|
||
|
D(1,N) = THREE*SLOPE(N-1)
|
||
|
IERR = IERR + 2
|
||
|
ENDIF
|
||
|
C
|
||
|
C NORMAL RETURN.
|
||
|
C
|
||
|
5000 CONTINUE
|
||
|
RETURN
|
||
|
C
|
||
|
C ERROR RETURN.
|
||
|
C
|
||
|
5001 CONTINUE
|
||
|
C ERROR RETURN FROM PCHDF.
|
||
|
C *** THIS CASE SHOULD NEVER OCCUR ***
|
||
|
IERR = -1
|
||
|
CALL XERMSG ('SLATEC', 'PCHCE', 'ERROR RETURN FROM PCHDF', IERR,
|
||
|
+ 1)
|
||
|
RETURN
|
||
|
C------------- LAST LINE OF PCHCE FOLLOWS ------------------------------
|
||
|
END
|