mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
389 lines
14 KiB
FortranFixed
389 lines
14 KiB
FortranFixed
|
*DECK PCHSP
|
||
|
SUBROUTINE PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
|
||
|
C***BEGIN PROLOGUE PCHSP
|
||
|
C***PURPOSE Set derivatives needed to determine the Hermite represen-
|
||
|
C tation of the cubic spline interpolant to given data, with
|
||
|
C specified boundary conditions.
|
||
|
C***LIBRARY SLATEC (PCHIP)
|
||
|
C***CATEGORY E1A
|
||
|
C***TYPE SINGLE PRECISION (PCHSP-S, DPCHSP-D)
|
||
|
C***KEYWORDS CUBIC HERMITE INTERPOLATION, PCHIP,
|
||
|
C PIECEWISE CUBIC INTERPOLATION, SPLINE INTERPOLATION
|
||
|
C***AUTHOR Fritsch, F. N., (LLNL)
|
||
|
C Lawrence Livermore National Laboratory
|
||
|
C P.O. Box 808 (L-316)
|
||
|
C Livermore, CA 94550
|
||
|
C FTS 532-4275, (510) 422-4275
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C PCHSP: Piecewise Cubic Hermite Spline
|
||
|
C
|
||
|
C Computes the Hermite representation of the cubic spline inter-
|
||
|
C polant to the data given in X and F satisfying the boundary
|
||
|
C conditions specified by IC and VC.
|
||
|
C
|
||
|
C To facilitate two-dimensional applications, includes an increment
|
||
|
C between successive values of the F- and D-arrays.
|
||
|
C
|
||
|
C The resulting piecewise cubic Hermite function may be evaluated
|
||
|
C by PCHFE or PCHFD.
|
||
|
C
|
||
|
C NOTE: This is a modified version of C. de Boor's cubic spline
|
||
|
C routine CUBSPL.
|
||
|
C
|
||
|
C ----------------------------------------------------------------------
|
||
|
C
|
||
|
C Calling sequence:
|
||
|
C
|
||
|
C PARAMETER (INCFD = ...)
|
||
|
C INTEGER IC(2), N, NWK, IERR
|
||
|
C REAL VC(2), X(N), F(INCFD,N), D(INCFD,N), WK(NWK)
|
||
|
C
|
||
|
C CALL PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
|
||
|
C
|
||
|
C Parameters:
|
||
|
C
|
||
|
C IC -- (input) integer array of length 2 specifying desired
|
||
|
C boundary conditions:
|
||
|
C IC(1) = IBEG, desired condition at beginning of data.
|
||
|
C IC(2) = IEND, desired condition at end of data.
|
||
|
C
|
||
|
C IBEG = 0 to set D(1) so that the third derivative is con-
|
||
|
C tinuous at X(2). This is the "not a knot" condition
|
||
|
C provided by de Boor's cubic spline routine CUBSPL.
|
||
|
C < This is the default boundary condition. >
|
||
|
C IBEG = 1 if first derivative at X(1) is given in VC(1).
|
||
|
C IBEG = 2 if second derivative at X(1) is given in VC(1).
|
||
|
C IBEG = 3 to use the 3-point difference formula for D(1).
|
||
|
C (Reverts to the default b.c. if N.LT.3 .)
|
||
|
C IBEG = 4 to use the 4-point difference formula for D(1).
|
||
|
C (Reverts to the default b.c. if N.LT.4 .)
|
||
|
C NOTES:
|
||
|
C 1. An error return is taken if IBEG is out of range.
|
||
|
C 2. For the "natural" boundary condition, use IBEG=2 and
|
||
|
C VC(1)=0.
|
||
|
C
|
||
|
C IEND may take on the same values as IBEG, but applied to
|
||
|
C derivative at X(N). In case IEND = 1 or 2, the value is
|
||
|
C given in VC(2).
|
||
|
C
|
||
|
C NOTES:
|
||
|
C 1. An error return is taken if IEND is out of range.
|
||
|
C 2. For the "natural" boundary condition, use IEND=2 and
|
||
|
C VC(2)=0.
|
||
|
C
|
||
|
C VC -- (input) real array of length 2 specifying desired boundary
|
||
|
C values, as indicated above.
|
||
|
C VC(1) need be set only if IC(1) = 1 or 2 .
|
||
|
C VC(2) need be set only if IC(2) = 1 or 2 .
|
||
|
C
|
||
|
C N -- (input) number of data points. (Error return if N.LT.2 .)
|
||
|
C
|
||
|
C X -- (input) real array of independent variable values. The
|
||
|
C elements of X must be strictly increasing:
|
||
|
C X(I-1) .LT. X(I), I = 2(1)N.
|
||
|
C (Error return if not.)
|
||
|
C
|
||
|
C F -- (input) real array of dependent variable values to be inter-
|
||
|
C polated. F(1+(I-1)*INCFD) is value corresponding to X(I).
|
||
|
C
|
||
|
C D -- (output) real array of derivative values at the data points.
|
||
|
C These values will determine the cubic spline interpolant
|
||
|
C with the requested boundary conditions.
|
||
|
C The value corresponding to X(I) is stored in
|
||
|
C D(1+(I-1)*INCFD), I=1(1)N.
|
||
|
C No other entries in D are changed.
|
||
|
C
|
||
|
C INCFD -- (input) increment between successive values in F and D.
|
||
|
C This argument is provided primarily for 2-D applications.
|
||
|
C (Error return if INCFD.LT.1 .)
|
||
|
C
|
||
|
C WK -- (scratch) real array of working storage.
|
||
|
C
|
||
|
C NWK -- (input) length of work array.
|
||
|
C (Error return if NWK.LT.2*N .)
|
||
|
C
|
||
|
C IERR -- (output) error flag.
|
||
|
C Normal return:
|
||
|
C IERR = 0 (no errors).
|
||
|
C "Recoverable" errors:
|
||
|
C IERR = -1 if N.LT.2 .
|
||
|
C IERR = -2 if INCFD.LT.1 .
|
||
|
C IERR = -3 if the X-array is not strictly increasing.
|
||
|
C IERR = -4 if IBEG.LT.0 or IBEG.GT.4 .
|
||
|
C IERR = -5 if IEND.LT.0 of IEND.GT.4 .
|
||
|
C IERR = -6 if both of the above are true.
|
||
|
C IERR = -7 if NWK is too small.
|
||
|
C NOTE: The above errors are checked in the order listed,
|
||
|
C and following arguments have **NOT** been validated.
|
||
|
C (The D-array has not been changed in any of these cases.)
|
||
|
C IERR = -8 in case of trouble solving the linear system
|
||
|
C for the interior derivative values.
|
||
|
C (The D-array may have been changed in this case.)
|
||
|
C ( Do **NOT** use it! )
|
||
|
C
|
||
|
C***REFERENCES Carl de Boor, A Practical Guide to Splines, Springer-
|
||
|
C Verlag, New York, 1978, pp. 53-59.
|
||
|
C***ROUTINES CALLED PCHDF, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 820503 DATE WRITTEN
|
||
|
C 820804 Converted to SLATEC library version.
|
||
|
C 870707 Minor cosmetic changes to prologue.
|
||
|
C 890411 Added SAVE statements (Vers. 3.2).
|
||
|
C 890703 Corrected category record. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 920429 Revised format and order of references. (WRB,FNF)
|
||
|
C***END PROLOGUE PCHSP
|
||
|
C Programming notes:
|
||
|
C
|
||
|
C To produce a double precision version, simply:
|
||
|
C a. Change PCHSP to DPCHSP wherever it occurs,
|
||
|
C b. Change the real declarations to double precision, and
|
||
|
C c. Change the constants ZERO, HALF, ... to double precision.
|
||
|
C
|
||
|
C DECLARE ARGUMENTS.
|
||
|
C
|
||
|
INTEGER IC(2), N, INCFD, NWK, IERR
|
||
|
REAL VC(2), X(*), F(INCFD,*), D(INCFD,*), WK(2,*)
|
||
|
C
|
||
|
C DECLARE LOCAL VARIABLES.
|
||
|
C
|
||
|
INTEGER IBEG, IEND, INDEX, J, NM1
|
||
|
REAL G, HALF, ONE, STEMP(3), THREE, TWO, XTEMP(4), ZERO
|
||
|
SAVE ZERO, HALF, ONE, TWO, THREE
|
||
|
REAL PCHDF
|
||
|
C
|
||
|
DATA ZERO /0./, HALF /0.5/, ONE /1./, TWO /2./, THREE /3./
|
||
|
C
|
||
|
C VALIDITY-CHECK ARGUMENTS.
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT PCHSP
|
||
|
IF ( N.LT.2 ) GO TO 5001
|
||
|
IF ( INCFD.LT.1 ) GO TO 5002
|
||
|
DO 1 J = 2, N
|
||
|
IF ( X(J).LE.X(J-1) ) GO TO 5003
|
||
|
1 CONTINUE
|
||
|
C
|
||
|
IBEG = IC(1)
|
||
|
IEND = IC(2)
|
||
|
IERR = 0
|
||
|
IF ( (IBEG.LT.0).OR.(IBEG.GT.4) ) IERR = IERR - 1
|
||
|
IF ( (IEND.LT.0).OR.(IEND.GT.4) ) IERR = IERR - 2
|
||
|
IF ( IERR.LT.0 ) GO TO 5004
|
||
|
C
|
||
|
C FUNCTION DEFINITION IS OK -- GO ON.
|
||
|
C
|
||
|
IF ( NWK .LT. 2*N ) GO TO 5007
|
||
|
C
|
||
|
C COMPUTE FIRST DIFFERENCES OF X SEQUENCE AND STORE IN WK(1,.). ALSO,
|
||
|
C COMPUTE FIRST DIVIDED DIFFERENCE OF DATA AND STORE IN WK(2,.).
|
||
|
DO 5 J=2,N
|
||
|
WK(1,J) = X(J) - X(J-1)
|
||
|
WK(2,J) = (F(1,J) - F(1,J-1))/WK(1,J)
|
||
|
5 CONTINUE
|
||
|
C
|
||
|
C SET TO DEFAULT BOUNDARY CONDITIONS IF N IS TOO SMALL.
|
||
|
C
|
||
|
IF ( IBEG.GT.N ) IBEG = 0
|
||
|
IF ( IEND.GT.N ) IEND = 0
|
||
|
C
|
||
|
C SET UP FOR BOUNDARY CONDITIONS.
|
||
|
C
|
||
|
IF ( (IBEG.EQ.1).OR.(IBEG.EQ.2) ) THEN
|
||
|
D(1,1) = VC(1)
|
||
|
ELSE IF (IBEG .GT. 2) THEN
|
||
|
C PICK UP FIRST IBEG POINTS, IN REVERSE ORDER.
|
||
|
DO 10 J = 1, IBEG
|
||
|
INDEX = IBEG-J+1
|
||
|
C INDEX RUNS FROM IBEG DOWN TO 1.
|
||
|
XTEMP(J) = X(INDEX)
|
||
|
IF (J .LT. IBEG) STEMP(J) = WK(2,INDEX)
|
||
|
10 CONTINUE
|
||
|
C --------------------------------
|
||
|
D(1,1) = PCHDF (IBEG, XTEMP, STEMP, IERR)
|
||
|
C --------------------------------
|
||
|
IF (IERR .NE. 0) GO TO 5009
|
||
|
IBEG = 1
|
||
|
ENDIF
|
||
|
C
|
||
|
IF ( (IEND.EQ.1).OR.(IEND.EQ.2) ) THEN
|
||
|
D(1,N) = VC(2)
|
||
|
ELSE IF (IEND .GT. 2) THEN
|
||
|
C PICK UP LAST IEND POINTS.
|
||
|
DO 15 J = 1, IEND
|
||
|
INDEX = N-IEND+J
|
||
|
C INDEX RUNS FROM N+1-IEND UP TO N.
|
||
|
XTEMP(J) = X(INDEX)
|
||
|
IF (J .LT. IEND) STEMP(J) = WK(2,INDEX+1)
|
||
|
15 CONTINUE
|
||
|
C --------------------------------
|
||
|
D(1,N) = PCHDF (IEND, XTEMP, STEMP, IERR)
|
||
|
C --------------------------------
|
||
|
IF (IERR .NE. 0) GO TO 5009
|
||
|
IEND = 1
|
||
|
ENDIF
|
||
|
C
|
||
|
C --------------------( BEGIN CODING FROM CUBSPL )--------------------
|
||
|
C
|
||
|
C **** A TRIDIAGONAL LINEAR SYSTEM FOR THE UNKNOWN SLOPES S(J) OF
|
||
|
C F AT X(J), J=1,...,N, IS GENERATED AND THEN SOLVED BY GAUSS ELIM-
|
||
|
C INATION, WITH S(J) ENDING UP IN D(1,J), ALL J.
|
||
|
C WK(1,.) AND WK(2,.) ARE USED FOR TEMPORARY STORAGE.
|
||
|
C
|
||
|
C CONSTRUCT FIRST EQUATION FROM FIRST BOUNDARY CONDITION, OF THE FORM
|
||
|
C WK(2,1)*S(1) + WK(1,1)*S(2) = D(1,1)
|
||
|
C
|
||
|
IF (IBEG .EQ. 0) THEN
|
||
|
IF (N .EQ. 2) THEN
|
||
|
C NO CONDITION AT LEFT END AND N = 2.
|
||
|
WK(2,1) = ONE
|
||
|
WK(1,1) = ONE
|
||
|
D(1,1) = TWO*WK(2,2)
|
||
|
ELSE
|
||
|
C NOT-A-KNOT CONDITION AT LEFT END AND N .GT. 2.
|
||
|
WK(2,1) = WK(1,3)
|
||
|
WK(1,1) = WK(1,2) + WK(1,3)
|
||
|
D(1,1) =((WK(1,2) + TWO*WK(1,1))*WK(2,2)*WK(1,3)
|
||
|
* + WK(1,2)**2*WK(2,3)) / WK(1,1)
|
||
|
ENDIF
|
||
|
ELSE IF (IBEG .EQ. 1) THEN
|
||
|
C SLOPE PRESCRIBED AT LEFT END.
|
||
|
WK(2,1) = ONE
|
||
|
WK(1,1) = ZERO
|
||
|
ELSE
|
||
|
C SECOND DERIVATIVE PRESCRIBED AT LEFT END.
|
||
|
WK(2,1) = TWO
|
||
|
WK(1,1) = ONE
|
||
|
D(1,1) = THREE*WK(2,2) - HALF*WK(1,2)*D(1,1)
|
||
|
ENDIF
|
||
|
C
|
||
|
C IF THERE ARE INTERIOR KNOTS, GENERATE THE CORRESPONDING EQUATIONS AND
|
||
|
C CARRY OUT THE FORWARD PASS OF GAUSS ELIMINATION, AFTER WHICH THE J-TH
|
||
|
C EQUATION READS WK(2,J)*S(J) + WK(1,J)*S(J+1) = D(1,J).
|
||
|
C
|
||
|
NM1 = N-1
|
||
|
IF (NM1 .GT. 1) THEN
|
||
|
DO 20 J=2,NM1
|
||
|
IF (WK(2,J-1) .EQ. ZERO) GO TO 5008
|
||
|
G = -WK(1,J+1)/WK(2,J-1)
|
||
|
D(1,J) = G*D(1,J-1)
|
||
|
* + THREE*(WK(1,J)*WK(2,J+1) + WK(1,J+1)*WK(2,J))
|
||
|
WK(2,J) = G*WK(1,J-1) + TWO*(WK(1,J) + WK(1,J+1))
|
||
|
20 CONTINUE
|
||
|
ENDIF
|
||
|
C
|
||
|
C CONSTRUCT LAST EQUATION FROM SECOND BOUNDARY CONDITION, OF THE FORM
|
||
|
C (-G*WK(2,N-1))*S(N-1) + WK(2,N)*S(N) = D(1,N)
|
||
|
C
|
||
|
C IF SLOPE IS PRESCRIBED AT RIGHT END, ONE CAN GO DIRECTLY TO BACK-
|
||
|
C SUBSTITUTION, SINCE ARRAYS HAPPEN TO BE SET UP JUST RIGHT FOR IT
|
||
|
C AT THIS POINT.
|
||
|
IF (IEND .EQ. 1) GO TO 30
|
||
|
C
|
||
|
IF (IEND .EQ. 0) THEN
|
||
|
IF (N.EQ.2 .AND. IBEG.EQ.0) THEN
|
||
|
C NOT-A-KNOT AT RIGHT ENDPOINT AND AT LEFT ENDPOINT AND N = 2.
|
||
|
D(1,2) = WK(2,2)
|
||
|
GO TO 30
|
||
|
ELSE IF ((N.EQ.2) .OR. (N.EQ.3 .AND. IBEG.EQ.0)) THEN
|
||
|
C EITHER (N=3 AND NOT-A-KNOT ALSO AT LEFT) OR (N=2 AND *NOT*
|
||
|
C NOT-A-KNOT AT LEFT END POINT).
|
||
|
D(1,N) = TWO*WK(2,N)
|
||
|
WK(2,N) = ONE
|
||
|
IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
|
||
|
G = -ONE/WK(2,N-1)
|
||
|
ELSE
|
||
|
C NOT-A-KNOT AND N .GE. 3, AND EITHER N.GT.3 OR ALSO NOT-A-
|
||
|
C KNOT AT LEFT END POINT.
|
||
|
G = WK(1,N-1) + WK(1,N)
|
||
|
C DO NOT NEED TO CHECK FOLLOWING DENOMINATORS (X-DIFFERENCES).
|
||
|
D(1,N) = ((WK(1,N)+TWO*G)*WK(2,N)*WK(1,N-1)
|
||
|
* + WK(1,N)**2*(F(1,N-1)-F(1,N-2))/WK(1,N-1))/G
|
||
|
IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
|
||
|
G = -G/WK(2,N-1)
|
||
|
WK(2,N) = WK(1,N-1)
|
||
|
ENDIF
|
||
|
ELSE
|
||
|
C SECOND DERIVATIVE PRESCRIBED AT RIGHT ENDPOINT.
|
||
|
D(1,N) = THREE*WK(2,N) + HALF*WK(1,N)*D(1,N)
|
||
|
WK(2,N) = TWO
|
||
|
IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
|
||
|
G = -ONE/WK(2,N-1)
|
||
|
ENDIF
|
||
|
C
|
||
|
C COMPLETE FORWARD PASS OF GAUSS ELIMINATION.
|
||
|
C
|
||
|
WK(2,N) = G*WK(1,N-1) + WK(2,N)
|
||
|
IF (WK(2,N) .EQ. ZERO) GO TO 5008
|
||
|
D(1,N) = (G*D(1,N-1) + D(1,N))/WK(2,N)
|
||
|
C
|
||
|
C CARRY OUT BACK SUBSTITUTION
|
||
|
C
|
||
|
30 CONTINUE
|
||
|
DO 40 J=NM1,1,-1
|
||
|
IF (WK(2,J) .EQ. ZERO) GO TO 5008
|
||
|
D(1,J) = (D(1,J) - WK(1,J)*D(1,J+1))/WK(2,J)
|
||
|
40 CONTINUE
|
||
|
C --------------------( END CODING FROM CUBSPL )--------------------
|
||
|
C
|
||
|
C NORMAL RETURN.
|
||
|
C
|
||
|
RETURN
|
||
|
C
|
||
|
C ERROR RETURNS.
|
||
|
C
|
||
|
5001 CONTINUE
|
||
|
C N.LT.2 RETURN.
|
||
|
IERR = -1
|
||
|
CALL XERMSG ('SLATEC', 'PCHSP',
|
||
|
+ 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
|
||
|
RETURN
|
||
|
C
|
||
|
5002 CONTINUE
|
||
|
C INCFD.LT.1 RETURN.
|
||
|
IERR = -2
|
||
|
CALL XERMSG ('SLATEC', 'PCHSP', 'INCREMENT LESS THAN ONE', IERR,
|
||
|
+ 1)
|
||
|
RETURN
|
||
|
C
|
||
|
5003 CONTINUE
|
||
|
C X-ARRAY NOT STRICTLY INCREASING.
|
||
|
IERR = -3
|
||
|
CALL XERMSG ('SLATEC', 'PCHSP', 'X-ARRAY NOT STRICTLY INCREASING'
|
||
|
+ , IERR, 1)
|
||
|
RETURN
|
||
|
C
|
||
|
5004 CONTINUE
|
||
|
C IC OUT OF RANGE RETURN.
|
||
|
IERR = IERR - 3
|
||
|
CALL XERMSG ('SLATEC', 'PCHSP', 'IC OUT OF RANGE', IERR, 1)
|
||
|
RETURN
|
||
|
C
|
||
|
5007 CONTINUE
|
||
|
C NWK TOO SMALL RETURN.
|
||
|
IERR = -7
|
||
|
CALL XERMSG ('SLATEC', 'PCHSP', 'WORK ARRAY TOO SMALL', IERR, 1)
|
||
|
RETURN
|
||
|
C
|
||
|
5008 CONTINUE
|
||
|
C SINGULAR SYSTEM.
|
||
|
C *** THEORETICALLY, THIS CAN ONLY OCCUR IF SUCCESSIVE X-VALUES ***
|
||
|
C *** ARE EQUAL, WHICH SHOULD ALREADY HAVE BEEN CAUGHT (IERR=-3). ***
|
||
|
IERR = -8
|
||
|
CALL XERMSG ('SLATEC', 'PCHSP', 'SINGULAR LINEAR SYSTEM', IERR,
|
||
|
+ 1)
|
||
|
RETURN
|
||
|
C
|
||
|
5009 CONTINUE
|
||
|
C ERROR RETURN FROM PCHDF.
|
||
|
C *** THIS CASE SHOULD NEVER OCCUR ***
|
||
|
IERR = -9
|
||
|
CALL XERMSG ('SLATEC', 'PCHSP', 'ERROR RETURN FROM PCHDF', IERR,
|
||
|
+ 1)
|
||
|
RETURN
|
||
|
C------------- LAST LINE OF PCHSP FOLLOWS ------------------------------
|
||
|
END
|