OpenLibm/slatec/poch1.f

146 lines
4.5 KiB
FortranFixed
Raw Normal View History

*DECK POCH1
FUNCTION POCH1 (A, X)
C***BEGIN PROLOGUE POCH1
C***PURPOSE Calculate a generalization of Pochhammer's symbol starting
C from first order.
C***LIBRARY SLATEC (FNLIB)
C***CATEGORY C1, C7A
C***TYPE SINGLE PRECISION (POCH1-S, DPOCH1-D)
C***KEYWORDS FIRST ORDER, FNLIB, POCHHAMMER, SPECIAL FUNCTIONS
C***AUTHOR Fullerton, W., (LANL)
C***DESCRIPTION
C
C Evaluate a generalization of Pochhammer's symbol for special
C situations that require especially accurate values when X is small in
C POCH1(A,X) = (POCH(A,X)-1)/X
C = (GAMMA(A+X)/GAMMA(A) - 1.0)/X .
C This specification is particularly suited for stably computing
C expressions such as
C (GAMMA(A+X)/GAMMA(A) - GAMMA(B+X)/GAMMA(B))/X
C = POCH1(A,X) - POCH1(B,X)
C Note that POCH1(A,0.0) = PSI(A)
C
C When ABS(X) is so small that substantial cancellation will occur if
C the straightforward formula is used, we use an expansion due
C to Fields and discussed by Y. L. Luke, The Special Functions and Their
C Approximations, Vol. 1, Academic Press, 1969, page 34.
C
C The ratio POCH(A,X) = GAMMA(A+X)/GAMMA(A) is written by Luke as
C (A+(X-1)/2)**X * polynomial in (A+(X-1)/2)**(-2) .
C In order to maintain significance in POCH1, we write for positive A
C (A+(X-1)/2)**X = EXP(X*LOG(A+(X-1)/2)) = EXP(Q)
C = 1.0 + Q*EXPREL(Q) .
C Likewise the polynomial is written
C POLY = 1.0 + X*POLY1(A,X) .
C Thus,
C POCH1(A,X) = (POCH(A,X) - 1) / X
C = EXPREL(Q)*(Q/X + Q*POLY1(A,X)) + POLY1(A,X)
C
C***REFERENCES (NONE)
C***ROUTINES CALLED COT, EXPREL, POCH, PSI, R1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 770801 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900727 Added EXTERNAL statement. (WRB)
C***END PROLOGUE POCH1
DIMENSION BERN(9), GBERN(10)
LOGICAL FIRST
EXTERNAL COT
SAVE BERN, PI, SQTBIG, ALNEPS, FIRST
DATA BERN( 1) / .8333333333 3333333E-01 /
DATA BERN( 2) / -.1388888888 8888889E-02 /
DATA BERN( 3) / .3306878306 8783069E-04 /
DATA BERN( 4) / -.8267195767 1957672E-06 /
DATA BERN( 5) / .2087675698 7868099E-07 /
DATA BERN( 6) / -.5284190138 6874932E-09 /
DATA BERN( 7) / .1338253653 0684679E-10 /
DATA BERN( 8) / -.3389680296 3225829E-12 /
DATA BERN( 9) / .8586062056 2778446E-14 /
DATA PI / 3.1415926535 8979324 E0 /
DATA FIRST /.TRUE./
C***FIRST EXECUTABLE STATEMENT POCH1
IF (FIRST) THEN
SQTBIG = 1.0/SQRT(24.0*R1MACH(1))
ALNEPS = LOG(R1MACH(3))
ENDIF
FIRST = .FALSE.
C
IF (X.EQ.0.0) POCH1 = PSI(A)
IF (X.EQ.0.0) RETURN
C
ABSX = ABS(X)
ABSA = ABS(A)
IF (ABSX.GT.0.1*ABSA) GO TO 70
IF (ABSX*LOG(MAX(ABSA,2.0)).GT.0.1) GO TO 70
C
BP = A
IF (A.LT.(-0.5)) BP = 1.0 - A - X
INCR = 0
IF (BP.LT.10.0) INCR = 11.0 - BP
B = BP + INCR
C
VAR = B + 0.5*(X-1.0)
ALNVAR = LOG(VAR)
Q = X*ALNVAR
C
POLY1 = 0.0
IF (VAR.GE.SQTBIG) GO TO 40
VAR2 = (1.0/VAR)**2
C
RHO = 0.5*(X+1.0)
GBERN(1) = 1.0
GBERN(2) = -RHO/12.0
TERM = VAR2
POLY1 = GBERN(2)*TERM
C
NTERMS = -0.5*ALNEPS/ALNVAR + 1.0
IF (NTERMS .GT. 9) CALL XERMSG ('SLATEC', 'POCH1',
+ 'NTERMS IS TOO BIG, MAYBE R1MACH(3) IS BAD', 1, 2)
IF (NTERMS.LT.2) GO TO 40
C
DO 30 K=2,NTERMS
GBK = 0.0
DO 20 J=1,K
NDX = K - J + 1
GBK = GBK + BERN(NDX)*GBERN(J)
20 CONTINUE
GBERN(K+1) = -RHO*GBK/K
C
TERM = TERM * (2*K-2.-X)*(2*K-1.-X)*VAR2
POLY1 = POLY1 + GBERN(K+1)*TERM
30 CONTINUE
C
40 POLY1 = (X-1.0)*POLY1
POCH1 = EXPREL(Q)*(ALNVAR + Q*POLY1) + POLY1
C
IF (INCR.EQ.0) GO TO 60
C
C WE HAVE POCH1(B,X). BUT BP IS SMALL, SO WE USE BACKWARDS RECURSION
C TO OBTAIN POCH1(BP,X).
C
DO 50 II=1,INCR
I = INCR - II
BINV = 1.0/(BP+I)
POCH1 = (POCH1-BINV)/(1.0+X*BINV)
50 CONTINUE
C
60 IF (BP.EQ.A) RETURN
C
C WE HAVE POCH1(BP,X), BUT A IS LT -0.5. WE THEREFORE USE A REFLECTION
C FORMULA TO OBTAIN POCH1(A,X).
C
SINPXX = SIN(PI*X)/X
SINPX2 = SIN(0.5*PI*X)
TRIG = SINPXX*COT(PI*B) - 2.0*SINPX2*(SINPX2/X)
C
POCH1 = TRIG + (1.0 + X*TRIG) * POCH1
RETURN
C
70 POCH1 = (POCH(A,X) - 1.0) / X
RETURN
C
END