mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
213 lines
9 KiB
FortranFixed
213 lines
9 KiB
FortranFixed
|
*DECK QAWS
|
||
|
SUBROUTINE QAWS (F, A, B, ALFA, BETA, INTEGR, EPSABS, EPSREL,
|
||
|
+ RESULT, ABSERR, NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
|
||
|
C***BEGIN PROLOGUE QAWS
|
||
|
C***PURPOSE The routine calculates an approximation result to a given
|
||
|
C definite integral I = Integral of F*W over (A,B),
|
||
|
C (where W shows a singular behaviour at the end points
|
||
|
C see parameter INTEGR).
|
||
|
C Hopefully satisfying following claim for accuracy
|
||
|
C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
|
||
|
C***LIBRARY SLATEC (QUADPACK)
|
||
|
C***CATEGORY H2A2A1
|
||
|
C***TYPE SINGLE PRECISION (QAWS-S, DQAWS-D)
|
||
|
C***KEYWORDS ALGEBRAIC-LOGARITHMIC END POINT SINGULARITIES,
|
||
|
C AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
|
||
|
C GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE, SPECIAL-PURPOSE
|
||
|
C***AUTHOR Piessens, Robert
|
||
|
C Applied Mathematics and Programming Division
|
||
|
C K. U. Leuven
|
||
|
C de Doncker, Elise
|
||
|
C Applied Mathematics and Programming Division
|
||
|
C K. U. Leuven
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Integration of functions having algebraico-logarithmic
|
||
|
C end point singularities
|
||
|
C Standard fortran subroutine
|
||
|
C Real version
|
||
|
C
|
||
|
C PARAMETERS
|
||
|
C ON ENTRY
|
||
|
C F - Real
|
||
|
C Function subprogram defining the integrand
|
||
|
C function F(X). The actual name for F needs to be
|
||
|
C declared E X T E R N A L in the driver program.
|
||
|
C
|
||
|
C A - Real
|
||
|
C Lower limit of integration
|
||
|
C
|
||
|
C B - Real
|
||
|
C Upper limit of integration, B.GT.A
|
||
|
C If B.LE.A, the routine will end with IER = 6.
|
||
|
C
|
||
|
C ALFA - Real
|
||
|
C Parameter in the integrand function, ALFA.GT.(-1)
|
||
|
C If ALFA.LE.(-1), the routine will end with
|
||
|
C IER = 6.
|
||
|
C
|
||
|
C BETA - Real
|
||
|
C Parameter in the integrand function, BETA.GT.(-1)
|
||
|
C If BETA.LE.(-1), the routine will end with
|
||
|
C IER = 6.
|
||
|
C
|
||
|
C INTEGR - Integer
|
||
|
C Indicates which WEIGHT function is to be used
|
||
|
C = 1 (X-A)**ALFA*(B-X)**BETA
|
||
|
C = 2 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
|
||
|
C = 3 (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
|
||
|
C = 4 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*LOG(B-X)
|
||
|
C If INTEGR.LT.1 or INTEGR.GT.4, the routine
|
||
|
C will end with IER = 6.
|
||
|
C
|
||
|
C EPSABS - Real
|
||
|
C Absolute accuracy requested
|
||
|
C EPSREL - Real
|
||
|
C Relative accuracy requested
|
||
|
C If EPSABS.LE.0
|
||
|
C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
|
||
|
C the routine will end with IER = 6.
|
||
|
C
|
||
|
C ON RETURN
|
||
|
C RESULT - Real
|
||
|
C Approximation to the integral
|
||
|
C
|
||
|
C ABSERR - Real
|
||
|
C Estimate of the modulus of the absolute error,
|
||
|
C Which should equal or exceed ABS(I-RESULT)
|
||
|
C
|
||
|
C NEVAL - Integer
|
||
|
C Number of integrand evaluations
|
||
|
C
|
||
|
C IER - Integer
|
||
|
C IER = 0 Normal and reliable termination of the
|
||
|
C routine. It is assumed that the requested
|
||
|
C accuracy has been achieved.
|
||
|
C IER.GT.0 Abnormal termination of the routine
|
||
|
C The estimates for the integral and error
|
||
|
C are less reliable. It is assumed that the
|
||
|
C requested accuracy has not been achieved.
|
||
|
C ERROR MESSAGES
|
||
|
C IER = 1 Maximum number of subdivisions allowed
|
||
|
C has been achieved. One can allow more
|
||
|
C subdivisions by increasing the value of
|
||
|
C LIMIT (and taking the according dimension
|
||
|
C adjustments into account). However, if
|
||
|
C this yields no improvement it is advised
|
||
|
C to analyze the integrand, in order to
|
||
|
C determine the integration difficulties
|
||
|
C which prevent the requested tolerance from
|
||
|
C being achieved. In case of a jump
|
||
|
C discontinuity or a local singularity
|
||
|
C of algebraico-logarithmic type at one or
|
||
|
C more interior points of the integration
|
||
|
C range, one should proceed by splitting up
|
||
|
C the interval at these points and calling
|
||
|
C the integrator on the subranges.
|
||
|
C = 2 The occurrence of roundoff error is
|
||
|
C detected, which prevents the requested
|
||
|
C tolerance from being achieved.
|
||
|
C = 3 Extremely bad integrand behaviour occurs
|
||
|
C at some points of the integration
|
||
|
C interval.
|
||
|
C = 6 The input is invalid, because
|
||
|
C B.LE.A or ALFA.LE.(-1) or BETA.LE.(-1) or
|
||
|
C or INTEGR.LT.1 or INTEGR.GT.4 or
|
||
|
C (EPSABS.LE.0 and
|
||
|
C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
|
||
|
C or LIMIT.LT.2 or LENW.LT.LIMIT*4.
|
||
|
C RESULT, ABSERR, NEVAL, LAST are set to
|
||
|
C zero. Except when LENW or LIMIT is invalid
|
||
|
C IWORK(1), WORK(LIMIT*2+1) and
|
||
|
C WORK(LIMIT*3+1) are set to zero, WORK(1)
|
||
|
C is set to A and WORK(LIMIT+1) to B.
|
||
|
C
|
||
|
C DIMENSIONING PARAMETERS
|
||
|
C LIMIT - Integer
|
||
|
C Dimensioning parameter for IWORK
|
||
|
C LIMIT determines the maximum number of
|
||
|
C subintervals in the partition of the given
|
||
|
C integration interval (A,B), LIMIT.GE.2.
|
||
|
C If LIMIT.LT.2, the routine will end with IER = 6.
|
||
|
C
|
||
|
C LENW - Integer
|
||
|
C Dimensioning parameter for WORK
|
||
|
C LENW must be at least LIMIT*4.
|
||
|
C If LENW.LT.LIMIT*4, the routine will end
|
||
|
C with IER = 6.
|
||
|
C
|
||
|
C LAST - Integer
|
||
|
C On return, LAST equals the number of
|
||
|
C subintervals produced in the subdivision process,
|
||
|
C which determines the significant number of
|
||
|
C elements actually in the WORK ARRAYS.
|
||
|
C
|
||
|
C WORK ARRAYS
|
||
|
C IWORK - Integer
|
||
|
C Vector of dimension LIMIT, the first K
|
||
|
C elements of which contain pointers
|
||
|
C to the error estimates over the subintervals,
|
||
|
C such that WORK(LIMIT*3+IWORK(1)), ...,
|
||
|
C WORK(LIMIT*3+IWORK(K)) form a decreasing
|
||
|
C sequence with K = LAST if LAST.LE.(LIMIT/2+2),
|
||
|
C and K = LIMIT+1-LAST otherwise
|
||
|
C
|
||
|
C WORK - Real
|
||
|
C Vector of dimension LENW
|
||
|
C On return
|
||
|
C WORK(1), ..., WORK(LAST) contain the left
|
||
|
C end points of the subintervals in the
|
||
|
C partition of (A,B),
|
||
|
C WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
|
||
|
C the right end points,
|
||
|
C WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST)
|
||
|
C contain the integral approximations over
|
||
|
C the subintervals,
|
||
|
C WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
|
||
|
C contain the error estimates.
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED QAWSE, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800101 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C***END PROLOGUE QAWS
|
||
|
C
|
||
|
REAL A,ABSERR,ALFA,B,BETA,EPSABS,EPSREL,F,RESULT,WORK
|
||
|
INTEGER IER,INTEGR,IWORK,LENW,LIMIT,LVL,L1,L2,L3,NEVAL
|
||
|
C
|
||
|
DIMENSION IWORK(*),WORK(*)
|
||
|
C
|
||
|
EXTERNAL F
|
||
|
C
|
||
|
C CHECK VALIDITY OF LIMIT AND LENW.
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT QAWS
|
||
|
IER = 6
|
||
|
NEVAL = 0
|
||
|
LAST = 0
|
||
|
RESULT = 0.0E+00
|
||
|
ABSERR = 0.0E+00
|
||
|
IF(LIMIT.LT.2.OR.LENW.LT.LIMIT*4) GO TO 10
|
||
|
C
|
||
|
C PREPARE CALL FOR QAWSE.
|
||
|
C
|
||
|
L1 = LIMIT+1
|
||
|
L2 = LIMIT+L1
|
||
|
L3 = LIMIT+L2
|
||
|
C
|
||
|
CALL QAWSE(F,A,B,ALFA,BETA,INTEGR,EPSABS,EPSREL,LIMIT,RESULT,
|
||
|
1 ABSERR,NEVAL,IER,WORK(1),WORK(L1),WORK(L2),WORK(L3),IWORK,LAST)
|
||
|
C
|
||
|
C CALL ERROR HANDLER IF NECESSARY.
|
||
|
C
|
||
|
LVL = 0
|
||
|
10 IF(IER.EQ.6) LVL = 1
|
||
|
IF (IER .NE. 0) CALL XERMSG ('SLATEC', 'QAWS',
|
||
|
+ 'ABNORMAL RETURN', IER, LVL)
|
||
|
RETURN
|
||
|
END
|