OpenLibm/slatec/qk15w.f

194 lines
6.8 KiB
FortranFixed
Raw Normal View History

*DECK QK15W
SUBROUTINE QK15W (F, W, P1, P2, P3, P4, KP, A, B, RESULT, ABSERR,
+ RESABS, RESASC)
C***BEGIN PROLOGUE QK15W
C***PURPOSE To compute I = Integral of F*W over (A,B), with error
C estimate
C J = Integral of ABS(F*W) over (A,B)
C***LIBRARY SLATEC (QUADPACK)
C***CATEGORY H2A2A2
C***TYPE SINGLE PRECISION (QK15W-S, DQK15W-D)
C***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
C***AUTHOR Piessens, Robert
C Applied Mathematics and Programming Division
C K. U. Leuven
C de Doncker, Elise
C Applied Mathematics and Programming Division
C K. U. Leuven
C***DESCRIPTION
C
C Integration rules
C Standard fortran subroutine
C Real version
C
C PARAMETERS
C ON ENTRY
C F - Real
C Function subprogram defining the integrand
C function F(X). The actual name for F needs to be
C declared E X T E R N A L in the driver program.
C
C W - Real
C Function subprogram defining the integrand
C WEIGHT function W(X). The actual name for W
C needs to be declared E X T E R N A L in the
C calling program.
C
C P1, P2, P3, P4 - Real
C Parameters in the WEIGHT function
C
C KP - Integer
C Key for indicating the type of WEIGHT function
C
C A - Real
C Lower limit of integration
C
C B - Real
C Upper limit of integration
C
C ON RETURN
C RESULT - Real
C Approximation to the integral I
C RESULT is computed by applying the 15-point
C Kronrod rule (RESK) obtained by optimal addition
C of abscissae to the 7-point Gauss rule (RESG).
C
C ABSERR - Real
C Estimate of the modulus of the absolute error,
C which should equal or exceed ABS(I-RESULT)
C
C RESABS - Real
C Approximation to the integral of ABS(F)
C
C RESASC - Real
C Approximation to the integral of ABS(F-I/(B-A))
C
C***REFERENCES (NONE)
C***ROUTINES CALLED R1MACH
C***REVISION HISTORY (YYMMDD)
C 810101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C***END PROLOGUE QK15W
C
REAL A,ABSC,ABSC1,ABSC2,ABSERR,B,CENTR,DHLGTH,
1 R1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2,
2 HLGTH,P1,P2,P3,P4,RESABS,RESASC,RESG,RESK,RESKH,RESULT,UFLOW,
3 W,WG,WGK,XGK
INTEGER J,JTW,JTWM1,KP
EXTERNAL F, W
C
DIMENSION FV1(7),FV2(7),XGK(8),WGK(8),WG(4)
C
C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
C CORRESPONDING WEIGHTS ARE GIVEN.
C
C XGK - ABSCISSAE OF THE 15-POINT GAUSS-KRONROD RULE
C XGK(2), XGK(4), ... ABSCISSAE OF THE 7-POINT
C GAUSS RULE
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
C ADDED TO THE 7-POINT GAUSS RULE
C
C WGK - WEIGHTS OF THE 15-POINT GAUSS-KRONROD RULE
C
C WG - WEIGHTS OF THE 7-POINT GAUSS RULE
C
SAVE XGK, WGK, WG
DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),
1 XGK(8)/
2 0.9914553711208126E+00, 0.9491079123427585E+00,
3 0.8648644233597691E+00, 0.7415311855993944E+00,
4 0.5860872354676911E+00, 0.4058451513773972E+00,
5 0.2077849550078985E+00, 0.0000000000000000E+00/
C
DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),
1 WGK(8)/
2 0.2293532201052922E-01, 0.6309209262997855E-01,
3 0.1047900103222502E+00, 0.1406532597155259E+00,
4 0.1690047266392679E+00, 0.1903505780647854E+00,
5 0.2044329400752989E+00, 0.2094821410847278E+00/
C
DATA WG(1),WG(2),WG(3),WG(4)/
1 0.1294849661688697E+00, 0.2797053914892767E+00,
2 0.3818300505051889E+00, 0.4179591836734694E+00/
C
C
C LIST OF MAJOR VARIABLES
C -----------------------
C
C CENTR - MID POINT OF THE INTERVAL
C HLGTH - HALF-LENGTH OF THE INTERVAL
C ABSC* - ABSCISSA
C FVAL* - FUNCTION VALUE
C RESG - RESULT OF THE 7-POINT GAUSS FORMULA
C RESK - RESULT OF THE 15-POINT KRONROD FORMULA
C RESKH - APPROXIMATION TO THE MEAN VALUE OF F*W OVER (A,B),
C I.E. TO I/(B-A)
C
C MACHINE DEPENDENT CONSTANTS
C ---------------------------
C
C EPMACH IS THE LARGEST RELATIVE SPACING.
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
C
C***FIRST EXECUTABLE STATEMENT QK15W
EPMACH = R1MACH(4)
UFLOW = R1MACH(1)
C
CENTR = 0.5E+00*(A+B)
HLGTH = 0.5E+00*(B-A)
DHLGTH = ABS(HLGTH)
C
C COMPUTE THE 15-POINT KRONROD APPROXIMATION TO THE
C INTEGRAL, AND ESTIMATE THE ERROR.
C
FC = F(CENTR)*W(CENTR,P1,P2,P3,P4,KP)
RESG = WG(4)*FC
RESK = WGK(8)*FC
RESABS = ABS(RESK)
DO 10 J=1,3
JTW = J*2
ABSC = HLGTH*XGK(JTW)
ABSC1 = CENTR-ABSC
ABSC2 = CENTR+ABSC
FVAL1 = F(ABSC1)*W(ABSC1,P1,P2,P3,P4,KP)
FVAL2 = F(ABSC2)*W(ABSC2,P1,P2,P3,P4,KP)
FV1(JTW) = FVAL1
FV2(JTW) = FVAL2
FSUM = FVAL1+FVAL2
RESG = RESG+WG(J)*FSUM
RESK = RESK+WGK(JTW)*FSUM
RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
10 CONTINUE
DO 15 J=1,4
JTWM1 = J*2-1
ABSC = HLGTH*XGK(JTWM1)
ABSC1 = CENTR-ABSC
ABSC2 = CENTR+ABSC
FVAL1 = F(ABSC1)*W(ABSC1,P1,P2,P3,P4,KP)
FVAL2 = F(ABSC2)*W(ABSC2,P1,P2,P3,P4,KP)
FV1(JTWM1) = FVAL1
FV2(JTWM1) = FVAL2
FSUM = FVAL1+FVAL2
RESK = RESK+WGK(JTWM1)*FSUM
RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
15 CONTINUE
RESKH = RESK*0.5E+00
RESASC = WGK(8)*ABS(FC-RESKH)
DO 20 J=1,7
RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
20 CONTINUE
RESULT = RESK*HLGTH
RESABS = RESABS*DHLGTH
RESASC = RESASC*DHLGTH
ABSERR = ABS((RESK-RESG)*HLGTH)
IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
1 ABSERR = RESASC*MIN(0.1E+01,
2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX((EPMACH*
1 0.5E+02)*RESABS,ABSERR)
RETURN
END