OpenLibm/slatec/qk21.f

183 lines
6.3 KiB
FortranFixed
Raw Normal View History

*DECK QK21
SUBROUTINE QK21 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
C***BEGIN PROLOGUE QK21
C***PURPOSE To compute I = Integral of F over (A,B), with error
C estimate
C J = Integral of ABS(F) over (A,B)
C***LIBRARY SLATEC (QUADPACK)
C***CATEGORY H2A1A2
C***TYPE SINGLE PRECISION (QK21-S, DQK21-D)
C***KEYWORDS 21-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
C***AUTHOR Piessens, Robert
C Applied Mathematics and Programming Division
C K. U. Leuven
C de Doncker, Elise
C Applied Mathematics and Programming Division
C K. U. Leuven
C***DESCRIPTION
C
C Integration rules
C Standard fortran subroutine
C Real version
C
C PARAMETERS
C ON ENTRY
C F - Real
C Function subprogram defining the integrand
C FUNCTION F(X). The actual name for F needs to be
C Declared E X T E R N A L in the driver program.
C
C A - Real
C Lower limit of integration
C
C B - Real
C Upper limit of integration
C
C ON RETURN
C RESULT - Real
C Approximation to the integral I
C RESULT is computed by applying the 21-POINT
C KRONROD RULE (RESK) obtained by optimal addition
C of abscissae to the 10-POINT GAUSS RULE (RESG).
C
C ABSERR - Real
C Estimate of the modulus of the absolute error,
C which should not exceed ABS(I-RESULT)
C
C RESABS - Real
C Approximation to the integral J
C
C RESASC - Real
C Approximation to the integral of ABS(F-I/(B-A))
C over (A,B)
C
C***REFERENCES (NONE)
C***ROUTINES CALLED R1MACH
C***REVISION HISTORY (YYMMDD)
C 800101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C***END PROLOGUE QK21
C
REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,
1 FV1,FV2,HLGTH,RESABS,RESG,RESK,RESKH,RESULT,R1MACH,UFLOW,WG,WGK,
2 XGK
INTEGER J,JTW,JTWM1
EXTERNAL F
C
DIMENSION FV1(10),FV2(10),WG(5),WGK(11),XGK(11)
C
C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
C CORRESPONDING WEIGHTS ARE GIVEN.
C
C XGK - ABSCISSAE OF THE 21-POINT KRONROD RULE
C XGK(2), XGK(4), ... ABSCISSAE OF THE 10-POINT
C GAUSS RULE
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
C ADDED TO THE 10-POINT GAUSS RULE
C
C WGK - WEIGHTS OF THE 21-POINT KRONROD RULE
C
C WG - WEIGHTS OF THE 10-POINT GAUSS RULE
C
SAVE XGK, WGK, WG
DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),
1 XGK(8),XGK(9),XGK(10),XGK(11)/
2 0.9956571630258081E+00, 0.9739065285171717E+00,
3 0.9301574913557082E+00, 0.8650633666889845E+00,
4 0.7808177265864169E+00, 0.6794095682990244E+00,
5 0.5627571346686047E+00, 0.4333953941292472E+00,
6 0.2943928627014602E+00, 0.1488743389816312E+00,
7 0.0000000000000000E+00/
C
DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),
1 WGK(8),WGK(9),WGK(10),WGK(11)/
2 0.1169463886737187E-01, 0.3255816230796473E-01,
3 0.5475589657435200E-01, 0.7503967481091995E-01,
4 0.9312545458369761E-01, 0.1093871588022976E+00,
5 0.1234919762620659E+00, 0.1347092173114733E+00,
6 0.1427759385770601E+00, 0.1477391049013385E+00,
7 0.1494455540029169E+00/
C
DATA WG(1),WG(2),WG(3),WG(4),WG(5)/
1 0.6667134430868814E-01, 0.1494513491505806E+00,
2 0.2190863625159820E+00, 0.2692667193099964E+00,
3 0.2955242247147529E+00/
C
C
C LIST OF MAJOR VARIABLES
C -----------------------
C
C CENTR - MID POINT OF THE INTERVAL
C HLGTH - HALF-LENGTH OF THE INTERVAL
C ABSC - ABSCISSA
C FVAL* - FUNCTION VALUE
C RESG - RESULT OF THE 10-POINT GAUSS FORMULA
C RESK - RESULT OF THE 21-POINT KRONROD FORMULA
C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
C I.E. TO I/(B-A)
C
C
C MACHINE DEPENDENT CONSTANTS
C ---------------------------
C
C EPMACH IS THE LARGEST RELATIVE SPACING.
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
C
C***FIRST EXECUTABLE STATEMENT QK21
EPMACH = R1MACH(4)
UFLOW = R1MACH(1)
C
CENTR = 0.5E+00*(A+B)
HLGTH = 0.5E+00*(B-A)
DHLGTH = ABS(HLGTH)
C
C COMPUTE THE 21-POINT KRONROD APPROXIMATION TO
C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
C
RESG = 0.0E+00
FC = F(CENTR)
RESK = WGK(11)*FC
RESABS = ABS(RESK)
DO 10 J=1,5
JTW = 2*J
ABSC = HLGTH*XGK(JTW)
FVAL1 = F(CENTR-ABSC)
FVAL2 = F(CENTR+ABSC)
FV1(JTW) = FVAL1
FV2(JTW) = FVAL2
FSUM = FVAL1+FVAL2
RESG = RESG+WG(J)*FSUM
RESK = RESK+WGK(JTW)*FSUM
RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
10 CONTINUE
DO 15 J = 1,5
JTWM1 = 2*J-1
ABSC = HLGTH*XGK(JTWM1)
FVAL1 = F(CENTR-ABSC)
FVAL2 = F(CENTR+ABSC)
FV1(JTWM1) = FVAL1
FV2(JTWM1) = FVAL2
FSUM = FVAL1+FVAL2
RESK = RESK+WGK(JTWM1)*FSUM
RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
15 CONTINUE
RESKH = RESK*0.5E+00
RESASC = WGK(11)*ABS(FC-RESKH)
DO 20 J=1,10
RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
20 CONTINUE
RESULT = RESK*HLGTH
RESABS = RESABS*DHLGTH
RESASC = RESASC*DHLGTH
ABSERR = ABS((RESK-RESG)*HLGTH)
IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
1 ABSERR = RESASC*MIN(0.1E+01,
2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
RETURN
END