OpenLibm/slatec/qmomo.f

140 lines
4.2 KiB
FortranFixed
Raw Normal View History

*DECK QMOMO
SUBROUTINE QMOMO (ALFA, BETA, RI, RJ, RG, RH, INTEGR)
C***BEGIN PROLOGUE QMOMO
C***PURPOSE This routine computes modified Chebyshev moments. The K-th
C modified Chebyshev moment is defined as the integral over
C (-1,1) of W(X)*T(K,X), where T(K,X) is the Chebyshev
C polynomial of degree K.
C***LIBRARY SLATEC (QUADPACK)
C***CATEGORY H2A2A1, C3A2
C***TYPE SINGLE PRECISION (QMOMO-S, DQMOMO-D)
C***KEYWORDS MODIFIED CHEBYSHEV MOMENTS, QUADPACK, QUADRATURE
C***AUTHOR Piessens, Robert
C Applied Mathematics and Programming Division
C K. U. Leuven
C de Doncker, Elise
C Applied Mathematics and Programming Division
C K. U. Leuven
C***DESCRIPTION
C
C MODIFIED CHEBYSHEV MOMENTS
C STANDARD FORTRAN SUBROUTINE
C REAL VERSION
C
C PARAMETERS
C ALFA - Real
C Parameter in the weight function W(X), ALFA.GT.(-1)
C
C BETA - Real
C Parameter in the weight function W(X), BETA.GT.(-1)
C
C RI - Real
C Vector of dimension 25
C RI(K) is the integral over (-1,1) of
C (1+X)**ALFA*T(K-1,X), K = 1, ..., 25.
C
C RJ - Real
C Vector of dimension 25
C RJ(K) is the integral over (-1,1) of
C (1-X)**BETA*T(K-1,X), K = 1, ..., 25.
C
C RG - Real
C Vector of dimension 25
C RG(K) is the integral over (-1,1) of
C (1+X)**ALFA*LOG((1+X)/2)*T(K-1,X), K = 1, ..., 25.
C
C RH - Real
C Vector of dimension 25
C RH(K) is the integral over (-1,1) of
C (1-X)**BETA*LOG((1-X)/2)*T(K-1,X), K = 1, ..., 25.
C
C INTEGR - Integer
C Input parameter indicating the modified
C Moments to be computed
C INTEGR = 1 compute RI, RJ
C = 2 compute RI, RJ, RG
C = 3 compute RI, RJ, RH
C = 4 compute RI, RJ, RG, RH
C
C***REFERENCES (NONE)
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 810101 DATE WRITTEN
C 891009 Removed unreferenced statement label. (WRB)
C 891009 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C***END PROLOGUE QMOMO
C
REAL ALFA,ALFP1,ALFP2,AN,ANM1,BETA,BETP1,
1 BETP2,RALF,RBET,RG,RH,RI,RJ
INTEGER I,IM1,INTEGR
C
DIMENSION RG(25),RH(25),RI(25),RJ(25)
C
C
C***FIRST EXECUTABLE STATEMENT QMOMO
ALFP1 = ALFA+0.1E+01
BETP1 = BETA+0.1E+01
ALFP2 = ALFA+0.2E+01
BETP2 = BETA+0.2E+01
RALF = 0.2E+01**ALFP1
RBET = 0.2E+01**BETP1
C
C COMPUTE RI, RJ USING A FORWARD RECURRENCE RELATION.
C
RI(1) = RALF/ALFP1
RJ(1) = RBET/BETP1
RI(2) = RI(1)*ALFA/ALFP2
RJ(2) = RJ(1)*BETA/BETP2
AN = 0.2E+01
ANM1 = 0.1E+01
DO 20 I=3,25
RI(I) = -(RALF+AN*(AN-ALFP2)*RI(I-1))/
1 (ANM1*(AN+ALFP1))
RJ(I) = -(RBET+AN*(AN-BETP2)*RJ(I-1))/
1 (ANM1*(AN+BETP1))
ANM1 = AN
AN = AN+0.1E+01
20 CONTINUE
IF(INTEGR.EQ.1) GO TO 70
IF(INTEGR.EQ.3) GO TO 40
C
C COMPUTE RG USING A FORWARD RECURRENCE RELATION.
C
RG(1) = -RI(1)/ALFP1
RG(2) = -(RALF+RALF)/(ALFP2*ALFP2)-RG(1)
AN = 0.2E+01
ANM1 = 0.1E+01
IM1 = 2
DO 30 I=3,25
RG(I) = -(AN*(AN-ALFP2)*RG(IM1)-AN*RI(IM1)+ANM1*RI(I))/
1 (ANM1*(AN+ALFP1))
ANM1 = AN
AN = AN+0.1E+01
IM1 = I
30 CONTINUE
IF(INTEGR.EQ.2) GO TO 70
C
C COMPUTE RH USING A FORWARD RECURRENCE RELATION.
C
40 RH(1) = -RJ(1)/BETP1
RH(2) = -(RBET+RBET)/(BETP2*BETP2)-RH(1)
AN = 0.2E+01
ANM1 = 0.1E+01
IM1 = 2
DO 50 I=3,25
RH(I) = -(AN*(AN-BETP2)*RH(IM1)-AN*RJ(IM1)+
1 ANM1*RJ(I))/(ANM1*(AN+BETP1))
ANM1 = AN
AN = AN+0.1E+01
IM1 = I
50 CONTINUE
DO 60 I=2,25,2
RH(I) = -RH(I)
60 CONTINUE
70 DO 80 I=2,25,2
RJ(I) = -RJ(I)
80 CONTINUE
RETURN
END