OpenLibm/slatec/qzhes.f

225 lines
6.5 KiB
FortranFixed
Raw Normal View History

*DECK QZHES
SUBROUTINE QZHES (NM, N, A, B, MATZ, Z)
C***BEGIN PROLOGUE QZHES
C***PURPOSE The first step of the QZ algorithm for solving generalized
C matrix eigenproblems. Accepts a pair of real general
C matrices and reduces one of them to upper Hessenberg
C and the other to upper triangular form using orthogonal
C transformations. Usually followed by QZIT, QZVAL, QZVEC.
C***LIBRARY SLATEC (EISPACK)
C***CATEGORY D4C1B3
C***TYPE SINGLE PRECISION (QZHES-S)
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
C***AUTHOR Smith, B. T., et al.
C***DESCRIPTION
C
C This subroutine is the first step of the QZ algorithm
C for solving generalized matrix eigenvalue problems,
C SIAM J. NUMER. ANAL. 10, 241-256(1973) by MOLER and STEWART.
C
C This subroutine accepts a pair of REAL GENERAL matrices and
C reduces one of them to upper Hessenberg form and the other
C to upper triangular form using orthogonal transformations.
C It is usually followed by QZIT, QZVAL and, possibly, QZVEC.
C
C On Input
C
C NM must be set to the row dimension of the two-dimensional
C array parameters, A, B, and Z, as declared in the calling
C program dimension statement. NM is an INTEGER variable.
C
C N is the order of the matrices A and B. N is an INTEGER
C variable. N must be less than or equal to NM.
C
C A contains a real general matrix. A is a two-dimensional
C REAL array, dimensioned A(NM,N).
C
C B contains a real general matrix. B is a two-dimensional
C REAL array, dimensioned B(NM,N).
C
C MATZ should be set to .TRUE. if the right hand transformations
C are to be accumulated for later use in computing
C eigenvectors, and to .FALSE. otherwise. MATZ is a LOGICAL
C variable.
C
C On Output
C
C A has been reduced to upper Hessenberg form. The elements
C below the first subdiagonal have been set to zero.
C
C B has been reduced to upper triangular form. The elements
C below the main diagonal have been set to zero.
C
C Z contains the product of the right hand transformations if
C MATZ has been set to .TRUE. Otherwise, Z is not referenced.
C Z is a two-dimensional REAL array, dimensioned Z(NM,N).
C
C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C ------------------------------------------------------------------
C
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C system Routines - EISPACK Guide, Springer-Verlag,
C 1976.
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 760101 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE QZHES
C
INTEGER I,J,K,L,N,LB,L1,NM,NK1,NM1,NM2
REAL A(NM,*),B(NM,*),Z(NM,*)
REAL R,S,T,U1,U2,V1,V2,RHO
LOGICAL MATZ
C
C .......... INITIALIZE Z ..........
C***FIRST EXECUTABLE STATEMENT QZHES
IF (.NOT. MATZ) GO TO 10
C
DO 3 I = 1, N
C
DO 2 J = 1, N
Z(I,J) = 0.0E0
2 CONTINUE
C
Z(I,I) = 1.0E0
3 CONTINUE
C .......... REDUCE B TO UPPER TRIANGULAR FORM ..........
10 IF (N .LE. 1) GO TO 170
NM1 = N - 1
C
DO 100 L = 1, NM1
L1 = L + 1
S = 0.0E0
C
DO 20 I = L1, N
S = S + ABS(B(I,L))
20 CONTINUE
C
IF (S .EQ. 0.0E0) GO TO 100
S = S + ABS(B(L,L))
R = 0.0E0
C
DO 25 I = L, N
B(I,L) = B(I,L) / S
R = R + B(I,L)**2
25 CONTINUE
C
R = SIGN(SQRT(R),B(L,L))
B(L,L) = B(L,L) + R
RHO = R * B(L,L)
C
DO 50 J = L1, N
T = 0.0E0
C
DO 30 I = L, N
T = T + B(I,L) * B(I,J)
30 CONTINUE
C
T = -T / RHO
C
DO 40 I = L, N
B(I,J) = B(I,J) + T * B(I,L)
40 CONTINUE
C
50 CONTINUE
C
DO 80 J = 1, N
T = 0.0E0
C
DO 60 I = L, N
T = T + B(I,L) * A(I,J)
60 CONTINUE
C
T = -T / RHO
C
DO 70 I = L, N
A(I,J) = A(I,J) + T * B(I,L)
70 CONTINUE
C
80 CONTINUE
C
B(L,L) = -S * R
C
DO 90 I = L1, N
B(I,L) = 0.0E0
90 CONTINUE
C
100 CONTINUE
C .......... REDUCE A TO UPPER HESSENBERG FORM, WHILE
C KEEPING B TRIANGULAR ..........
IF (N .EQ. 2) GO TO 170
NM2 = N - 2
C
DO 160 K = 1, NM2
NK1 = NM1 - K
C .......... FOR L=N-1 STEP -1 UNTIL K+1 DO -- ..........
DO 150 LB = 1, NK1
L = N - LB
L1 = L + 1
C .......... ZERO A(L+1,K) ..........
S = ABS(A(L,K)) + ABS(A(L1,K))
IF (S .EQ. 0.0E0) GO TO 150
U1 = A(L,K) / S
U2 = A(L1,K) / S
R = SIGN(SQRT(U1*U1+U2*U2),U1)
V1 = -(U1 + R) / R
V2 = -U2 / R
U2 = V2 / V1
C
DO 110 J = K, N
T = A(L,J) + U2 * A(L1,J)
A(L,J) = A(L,J) + T * V1
A(L1,J) = A(L1,J) + T * V2
110 CONTINUE
C
A(L1,K) = 0.0E0
C
DO 120 J = L, N
T = B(L,J) + U2 * B(L1,J)
B(L,J) = B(L,J) + T * V1
B(L1,J) = B(L1,J) + T * V2
120 CONTINUE
C .......... ZERO B(L+1,L) ..........
S = ABS(B(L1,L1)) + ABS(B(L1,L))
IF (S .EQ. 0.0E0) GO TO 150
U1 = B(L1,L1) / S
U2 = B(L1,L) / S
R = SIGN(SQRT(U1*U1+U2*U2),U1)
V1 = -(U1 + R) / R
V2 = -U2 / R
U2 = V2 / V1
C
DO 130 I = 1, L1
T = B(I,L1) + U2 * B(I,L)
B(I,L1) = B(I,L1) + T * V1
B(I,L) = B(I,L) + T * V2
130 CONTINUE
C
B(L1,L) = 0.0E0
C
DO 140 I = 1, N
T = A(I,L1) + U2 * A(I,L)
A(I,L1) = A(I,L1) + T * V1
A(I,L) = A(I,L) + T * V2
140 CONTINUE
C
IF (.NOT. MATZ) GO TO 150
C
DO 145 I = 1, N
T = Z(I,L1) + U2 * Z(I,L)
Z(I,L1) = Z(I,L1) + T * V1
Z(I,L) = Z(I,L) + T * V2
145 CONTINUE
C
150 CONTINUE
C
160 CONTINUE
C
170 RETURN
END