mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
279 lines
9.9 KiB
FortranFixed
279 lines
9.9 KiB
FortranFixed
|
*DECK QZVEC
|
||
|
SUBROUTINE QZVEC (NM, N, A, B, ALFR, ALFI, BETA, Z)
|
||
|
C***BEGIN PROLOGUE QZVEC
|
||
|
C***PURPOSE The optional fourth step of the QZ algorithm for
|
||
|
C generalized eigenproblems. Accepts a matrix in
|
||
|
C quasi-triangular form and another in upper triangular
|
||
|
C and computes the eigenvectors of the triangular problem
|
||
|
C and transforms them back to the original coordinates
|
||
|
C Usually preceded by QZHES, QZIT, and QZVAL.
|
||
|
C***LIBRARY SLATEC (EISPACK)
|
||
|
C***CATEGORY D4C3
|
||
|
C***TYPE SINGLE PRECISION (QZVEC-S)
|
||
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
||
|
C***AUTHOR Smith, B. T., et al.
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This subroutine is the optional fourth step of the QZ algorithm
|
||
|
C for solving generalized matrix eigenvalue problems,
|
||
|
C SIAM J. NUMER. ANAL. 10, 241-256(1973) by MOLER and STEWART.
|
||
|
C
|
||
|
C This subroutine accepts a pair of REAL matrices, one of them in
|
||
|
C quasi-triangular form (in which each 2-by-2 block corresponds to
|
||
|
C a pair of complex eigenvalues) and the other in upper triangular
|
||
|
C form. It computes the eigenvectors of the triangular problem and
|
||
|
C transforms the results back to the original coordinate system.
|
||
|
C It is usually preceded by QZHES, QZIT, and QZVAL.
|
||
|
C
|
||
|
C On Input
|
||
|
C
|
||
|
C NM must be set to the row dimension of the two-dimensional
|
||
|
C array parameters, A, B, and Z, as declared in the calling
|
||
|
C program dimension statement. NM is an INTEGER variable.
|
||
|
C
|
||
|
C N is the order of the matrices A and B. N is an INTEGER
|
||
|
C variable. N must be less than or equal to NM.
|
||
|
C
|
||
|
C A contains a real upper quasi-triangular matrix. A is a two-
|
||
|
C dimensional REAL array, dimensioned A(NM,N).
|
||
|
C
|
||
|
C B contains a real upper triangular matrix. In addition,
|
||
|
C location B(N,1) contains the tolerance quantity (EPSB)
|
||
|
C computed and saved in QZIT. B is a two-dimensional REAL
|
||
|
C array, dimensioned B(NM,N).
|
||
|
C
|
||
|
C ALFR, ALFI, and BETA are one-dimensional REAL arrays with
|
||
|
C components whose ratios ((ALFR+I*ALFI)/BETA) are the
|
||
|
C generalized eigenvalues. They are usually obtained from
|
||
|
C QZVAL. They are dimensioned ALFR(N), ALFI(N), and BETA(N).
|
||
|
C
|
||
|
C Z contains the transformation matrix produced in the reductions
|
||
|
C by QZHES, QZIT, and QZVAL, if performed. If the
|
||
|
C eigenvectors of the triangular problem are desired, Z must
|
||
|
C contain the identity matrix. Z is a two-dimensional REAL
|
||
|
C array, dimensioned Z(NM,N).
|
||
|
C
|
||
|
C On Output
|
||
|
C
|
||
|
C A is unaltered. Its subdiagonal elements provide information
|
||
|
C about the storage of the complex eigenvectors.
|
||
|
C
|
||
|
C B has been destroyed.
|
||
|
C
|
||
|
C ALFR, ALFI, and BETA are unaltered.
|
||
|
C
|
||
|
C Z contains the real and imaginary parts of the eigenvectors.
|
||
|
C If ALFI(J) .EQ. 0.0, the J-th eigenvalue is real and
|
||
|
C the J-th column of Z contains its eigenvector.
|
||
|
C If ALFI(J) .NE. 0.0, the J-th eigenvalue is complex.
|
||
|
C If ALFI(J) .GT. 0.0, the eigenvalue is the first of
|
||
|
C a complex pair and the J-th and (J+1)-th columns
|
||
|
C of Z contain its eigenvector.
|
||
|
C If ALFI(J) .LT. 0.0, the eigenvalue is the second of
|
||
|
C a complex pair and the (J-1)-th and J-th columns
|
||
|
C of Z contain the conjugate of its eigenvector.
|
||
|
C Each eigenvector is normalized so that the modulus
|
||
|
C of its largest component is 1.0 .
|
||
|
C
|
||
|
C Questions and comments should be directed to B. S. Garbow,
|
||
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
||
|
C ------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
||
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
||
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
||
|
C 1976.
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 760101 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE QZVEC
|
||
|
C
|
||
|
INTEGER I,J,K,M,N,EN,II,JJ,NA,NM,NN,ISW,ENM2
|
||
|
REAL A(NM,*),B(NM,*),ALFR(*),ALFI(*),BETA(*),Z(NM,*)
|
||
|
REAL D,Q,R,S,T,W,X,Y,DI,DR,RA,RR,SA,TI,TR,T1,T2
|
||
|
REAL W1,X1,ZZ,Z1,ALFM,ALMI,ALMR,BETM,EPSB
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT QZVEC
|
||
|
EPSB = B(N,1)
|
||
|
ISW = 1
|
||
|
C .......... FOR EN=N STEP -1 UNTIL 1 DO -- ..........
|
||
|
DO 800 NN = 1, N
|
||
|
EN = N + 1 - NN
|
||
|
NA = EN - 1
|
||
|
IF (ISW .EQ. 2) GO TO 795
|
||
|
IF (ALFI(EN) .NE. 0.0E0) GO TO 710
|
||
|
C .......... REAL VECTOR ..........
|
||
|
M = EN
|
||
|
B(EN,EN) = 1.0E0
|
||
|
IF (NA .EQ. 0) GO TO 800
|
||
|
ALFM = ALFR(M)
|
||
|
BETM = BETA(M)
|
||
|
C .......... FOR I=EN-1 STEP -1 UNTIL 1 DO -- ..........
|
||
|
DO 700 II = 1, NA
|
||
|
I = EN - II
|
||
|
W = BETM * A(I,I) - ALFM * B(I,I)
|
||
|
R = 0.0E0
|
||
|
C
|
||
|
DO 610 J = M, EN
|
||
|
610 R = R + (BETM * A(I,J) - ALFM * B(I,J)) * B(J,EN)
|
||
|
C
|
||
|
IF (I .EQ. 1 .OR. ISW .EQ. 2) GO TO 630
|
||
|
IF (BETM * A(I,I-1) .EQ. 0.0E0) GO TO 630
|
||
|
ZZ = W
|
||
|
S = R
|
||
|
GO TO 690
|
||
|
630 M = I
|
||
|
IF (ISW .EQ. 2) GO TO 640
|
||
|
C .......... REAL 1-BY-1 BLOCK ..........
|
||
|
T = W
|
||
|
IF (W .EQ. 0.0E0) T = EPSB
|
||
|
B(I,EN) = -R / T
|
||
|
GO TO 700
|
||
|
C .......... REAL 2-BY-2 BLOCK ..........
|
||
|
640 X = BETM * A(I,I+1) - ALFM * B(I,I+1)
|
||
|
Y = BETM * A(I+1,I)
|
||
|
Q = W * ZZ - X * Y
|
||
|
T = (X * S - ZZ * R) / Q
|
||
|
B(I,EN) = T
|
||
|
IF (ABS(X) .LE. ABS(ZZ)) GO TO 650
|
||
|
B(I+1,EN) = (-R - W * T) / X
|
||
|
GO TO 690
|
||
|
650 B(I+1,EN) = (-S - Y * T) / ZZ
|
||
|
690 ISW = 3 - ISW
|
||
|
700 CONTINUE
|
||
|
C .......... END REAL VECTOR ..........
|
||
|
GO TO 800
|
||
|
C .......... COMPLEX VECTOR ..........
|
||
|
710 M = NA
|
||
|
ALMR = ALFR(M)
|
||
|
ALMI = ALFI(M)
|
||
|
BETM = BETA(M)
|
||
|
C .......... LAST VECTOR COMPONENT CHOSEN IMAGINARY SO THAT
|
||
|
C EIGENVECTOR MATRIX IS TRIANGULAR ..........
|
||
|
Y = BETM * A(EN,NA)
|
||
|
B(NA,NA) = -ALMI * B(EN,EN) / Y
|
||
|
B(NA,EN) = (ALMR * B(EN,EN) - BETM * A(EN,EN)) / Y
|
||
|
B(EN,NA) = 0.0E0
|
||
|
B(EN,EN) = 1.0E0
|
||
|
ENM2 = NA - 1
|
||
|
IF (ENM2 .EQ. 0) GO TO 795
|
||
|
C .......... FOR I=EN-2 STEP -1 UNTIL 1 DO -- ..........
|
||
|
DO 790 II = 1, ENM2
|
||
|
I = NA - II
|
||
|
W = BETM * A(I,I) - ALMR * B(I,I)
|
||
|
W1 = -ALMI * B(I,I)
|
||
|
RA = 0.0E0
|
||
|
SA = 0.0E0
|
||
|
C
|
||
|
DO 760 J = M, EN
|
||
|
X = BETM * A(I,J) - ALMR * B(I,J)
|
||
|
X1 = -ALMI * B(I,J)
|
||
|
RA = RA + X * B(J,NA) - X1 * B(J,EN)
|
||
|
SA = SA + X * B(J,EN) + X1 * B(J,NA)
|
||
|
760 CONTINUE
|
||
|
C
|
||
|
IF (I .EQ. 1 .OR. ISW .EQ. 2) GO TO 770
|
||
|
IF (BETM * A(I,I-1) .EQ. 0.0E0) GO TO 770
|
||
|
ZZ = W
|
||
|
Z1 = W1
|
||
|
R = RA
|
||
|
S = SA
|
||
|
ISW = 2
|
||
|
GO TO 790
|
||
|
770 M = I
|
||
|
IF (ISW .EQ. 2) GO TO 780
|
||
|
C .......... COMPLEX 1-BY-1 BLOCK ..........
|
||
|
TR = -RA
|
||
|
TI = -SA
|
||
|
773 DR = W
|
||
|
DI = W1
|
||
|
C .......... COMPLEX DIVIDE (T1,T2) = (TR,TI) / (DR,DI) ..........
|
||
|
775 IF (ABS(DI) .GT. ABS(DR)) GO TO 777
|
||
|
RR = DI / DR
|
||
|
D = DR + DI * RR
|
||
|
T1 = (TR + TI * RR) / D
|
||
|
T2 = (TI - TR * RR) / D
|
||
|
GO TO (787,782), ISW
|
||
|
777 RR = DR / DI
|
||
|
D = DR * RR + DI
|
||
|
T1 = (TR * RR + TI) / D
|
||
|
T2 = (TI * RR - TR) / D
|
||
|
GO TO (787,782), ISW
|
||
|
C .......... COMPLEX 2-BY-2 BLOCK ..........
|
||
|
780 X = BETM * A(I,I+1) - ALMR * B(I,I+1)
|
||
|
X1 = -ALMI * B(I,I+1)
|
||
|
Y = BETM * A(I+1,I)
|
||
|
TR = Y * RA - W * R + W1 * S
|
||
|
TI = Y * SA - W * S - W1 * R
|
||
|
DR = W * ZZ - W1 * Z1 - X * Y
|
||
|
DI = W * Z1 + W1 * ZZ - X1 * Y
|
||
|
IF (DR .EQ. 0.0E0 .AND. DI .EQ. 0.0E0) DR = EPSB
|
||
|
GO TO 775
|
||
|
782 B(I+1,NA) = T1
|
||
|
B(I+1,EN) = T2
|
||
|
ISW = 1
|
||
|
IF (ABS(Y) .GT. ABS(W) + ABS(W1)) GO TO 785
|
||
|
TR = -RA - X * B(I+1,NA) + X1 * B(I+1,EN)
|
||
|
TI = -SA - X * B(I+1,EN) - X1 * B(I+1,NA)
|
||
|
GO TO 773
|
||
|
785 T1 = (-R - ZZ * B(I+1,NA) + Z1 * B(I+1,EN)) / Y
|
||
|
T2 = (-S - ZZ * B(I+1,EN) - Z1 * B(I+1,NA)) / Y
|
||
|
787 B(I,NA) = T1
|
||
|
B(I,EN) = T2
|
||
|
790 CONTINUE
|
||
|
C .......... END COMPLEX VECTOR ..........
|
||
|
795 ISW = 3 - ISW
|
||
|
800 CONTINUE
|
||
|
C .......... END BACK SUBSTITUTION.
|
||
|
C TRANSFORM TO ORIGINAL COORDINATE SYSTEM.
|
||
|
C FOR J=N STEP -1 UNTIL 1 DO -- ..........
|
||
|
DO 880 JJ = 1, N
|
||
|
J = N + 1 - JJ
|
||
|
C
|
||
|
DO 880 I = 1, N
|
||
|
ZZ = 0.0E0
|
||
|
C
|
||
|
DO 860 K = 1, J
|
||
|
860 ZZ = ZZ + Z(I,K) * B(K,J)
|
||
|
C
|
||
|
Z(I,J) = ZZ
|
||
|
880 CONTINUE
|
||
|
C .......... NORMALIZE SO THAT MODULUS OF LARGEST
|
||
|
C COMPONENT OF EACH VECTOR IS 1.
|
||
|
C (ISW IS 1 INITIALLY FROM BEFORE) ..........
|
||
|
DO 950 J = 1, N
|
||
|
D = 0.0E0
|
||
|
IF (ISW .EQ. 2) GO TO 920
|
||
|
IF (ALFI(J) .NE. 0.0E0) GO TO 945
|
||
|
C
|
||
|
DO 890 I = 1, N
|
||
|
IF (ABS(Z(I,J)) .GT. D) D = ABS(Z(I,J))
|
||
|
890 CONTINUE
|
||
|
C
|
||
|
DO 900 I = 1, N
|
||
|
900 Z(I,J) = Z(I,J) / D
|
||
|
C
|
||
|
GO TO 950
|
||
|
C
|
||
|
920 DO 930 I = 1, N
|
||
|
R = ABS(Z(I,J-1)) + ABS(Z(I,J))
|
||
|
IF (R .NE. 0.0E0) R = R * SQRT((Z(I,J-1)/R)**2
|
||
|
1 +(Z(I,J)/R)**2)
|
||
|
IF (R .GT. D) D = R
|
||
|
930 CONTINUE
|
||
|
C
|
||
|
DO 940 I = 1, N
|
||
|
Z(I,J-1) = Z(I,J-1) / D
|
||
|
Z(I,J) = Z(I,J) / D
|
||
|
940 CONTINUE
|
||
|
C
|
||
|
945 ISW = 3 - ISW
|
||
|
950 CONTINUE
|
||
|
C
|
||
|
RETURN
|
||
|
END
|