mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
104 lines
2.9 KiB
FortranFixed
104 lines
2.9 KiB
FortranFixed
|
*DECK RPQR79
|
||
|
SUBROUTINE RPQR79 (NDEG, COEFF, ROOT, IERR, WORK)
|
||
|
C***BEGIN PROLOGUE RPQR79
|
||
|
C***PURPOSE Find the zeros of a polynomial with real coefficients.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY F1A1A
|
||
|
C***TYPE SINGLE PRECISION (RPQR79-S, CPQR79-C)
|
||
|
C***KEYWORDS COMPLEX POLYNOMIAL, POLYNOMIAL ROOTS, POLYNOMIAL ZEROS
|
||
|
C***AUTHOR Vandevender, W. H., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Abstract
|
||
|
C This routine computes all zeros of a polynomial of degree NDEG
|
||
|
C with real coefficients by computing the eigenvalues of the
|
||
|
C companion matrix.
|
||
|
C
|
||
|
C Description of Parameters
|
||
|
C The user must dimension all arrays appearing in the call list
|
||
|
C COEFF(NDEG+1), ROOT(NDEG), WORK(NDEG*(NDEG+2))
|
||
|
C
|
||
|
C --Input--
|
||
|
C NDEG degree of polynomial
|
||
|
C
|
||
|
C COEFF REAL coefficients in descending order. i.e.,
|
||
|
C P(Z)= COEFF(1)*(Z**NDEG) + COEFF(NDEG)*Z + COEFF(NDEG+1)
|
||
|
C
|
||
|
C WORK REAL work array of dimension at least NDEG*(NDEG+2)
|
||
|
C
|
||
|
C --Output--
|
||
|
C ROOT COMPLEX vector of roots
|
||
|
C
|
||
|
C IERR Output Error Code
|
||
|
C - Normal Code
|
||
|
C 0 means the roots were computed.
|
||
|
C - Abnormal Codes
|
||
|
C 1 more than 30 QR iterations on some eigenvalue of the
|
||
|
C companion matrix
|
||
|
C 2 COEFF(1)=0.0
|
||
|
C 3 NDEG is invalid (less than or equal to 0)
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED HQR, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800601 DATE WRITTEN
|
||
|
C 890505 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 911010 Code reworked and simplified. (RWC and WRB)
|
||
|
C***END PROLOGUE RPQR79
|
||
|
REAL COEFF(*), WORK(*), SCALE
|
||
|
COMPLEX ROOT(*)
|
||
|
INTEGER NDEG, IERR, K, KH, KWR, KWI, KCOL
|
||
|
C***FIRST EXECUTABLE STATEMENT RPQR79
|
||
|
IERR = 0
|
||
|
IF (ABS(COEFF(1)) .EQ. 0.0) THEN
|
||
|
IERR = 2
|
||
|
CALL XERMSG ('SLATEC', 'RPQR79',
|
||
|
+ 'LEADING COEFFICIENT IS ZERO.', 2, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
IF (NDEG .LE. 0) THEN
|
||
|
IERR = 3
|
||
|
CALL XERMSG ('SLATEC', 'RPQR79', 'DEGREE INVALID.', 3, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
IF (NDEG .EQ. 1) THEN
|
||
|
ROOT(1) = CMPLX(-COEFF(2)/COEFF(1),0.0)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
SCALE = 1.0E0/COEFF(1)
|
||
|
KH = 1
|
||
|
KWR = KH+NDEG*NDEG
|
||
|
KWI = KWR+NDEG
|
||
|
KWEND = KWI+NDEG-1
|
||
|
C
|
||
|
DO 10 K=1,KWEND
|
||
|
WORK(K) = 0.0E0
|
||
|
10 CONTINUE
|
||
|
C
|
||
|
DO 20 K=1,NDEG
|
||
|
KCOL = (K-1)*NDEG+1
|
||
|
WORK(KCOL) = -COEFF(K+1)*SCALE
|
||
|
IF (K .NE. NDEG) WORK(KCOL+K) = 1.0E0
|
||
|
20 CONTINUE
|
||
|
C
|
||
|
CALL HQR (NDEG,NDEG,1,NDEG,WORK(KH),WORK(KWR),WORK(KWI),IERR)
|
||
|
C
|
||
|
IF (IERR .NE. 0) THEN
|
||
|
IERR = 1
|
||
|
CALL XERMSG ('SLATEC', 'CPQR79',
|
||
|
+ 'NO CONVERGENCE IN 30 QR ITERATIONS.', 1, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
DO 30 K=1,NDEG
|
||
|
KM1 = K-1
|
||
|
ROOT(K) = CMPLX(WORK(KWR+KM1),WORK(KWI+KM1))
|
||
|
30 CONTINUE
|
||
|
RETURN
|
||
|
END
|