OpenLibm/slatec/sdastp.f

612 lines
17 KiB
FortranFixed
Raw Normal View History

*DECK SDASTP
SUBROUTINE SDASTP (X, Y, YPRIME, NEQ, RES, JAC, H, WT, JSTART,
* IDID, RPAR, IPAR, PHI, DELTA, E, WM, IWM, ALPHA, BETA, GAMMA,
* PSI, SIGMA, CJ, CJOLD, HOLD, S, HMIN, UROUND, IPHASE, JCALC, K,
* KOLD, NS, NONNEG, NTEMP)
C***BEGIN PROLOGUE SDASTP
C***SUBSIDIARY
C***PURPOSE Perform one step of the SDASSL integration.
C***LIBRARY SLATEC (DASSL)
C***TYPE SINGLE PRECISION (SDASTP-S, DDASTP-D)
C***AUTHOR Petzold, Linda R., (LLNL)
C***DESCRIPTION
C-----------------------------------------------------------------------
C SDASTP SOLVES A SYSTEM OF DIFFERENTIAL/
C ALGEBRAIC EQUATIONS OF THE FORM
C G(X,Y,YPRIME) = 0, FOR ONE STEP (NORMALLY
C FROM X TO X+H).
C
C THE METHODS USED ARE MODIFIED DIVIDED
C DIFFERENCE,FIXED LEADING COEFFICIENT
C FORMS OF BACKWARD DIFFERENTIATION
C FORMULAS. THE CODE ADJUSTS THE STEPSIZE
C AND ORDER TO CONTROL THE LOCAL ERROR PER
C STEP.
C
C
C THE PARAMETERS REPRESENT
C X -- INDEPENDENT VARIABLE
C Y -- SOLUTION VECTOR AT X
C YPRIME -- DERIVATIVE OF SOLUTION VECTOR
C AFTER SUCCESSFUL STEP
C NEQ -- NUMBER OF EQUATIONS TO BE INTEGRATED
C RES -- EXTERNAL USER-SUPPLIED SUBROUTINE
C TO EVALUATE THE RESIDUAL. THE CALL IS
C CALL RES(X,Y,YPRIME,DELTA,IRES,RPAR,IPAR)
C X,Y,YPRIME ARE INPUT. DELTA IS OUTPUT.
C ON INPUT, IRES=0. RES SHOULD ALTER IRES ONLY
C IF IT ENCOUNTERS AN ILLEGAL VALUE OF Y OR A
C STOP CONDITION. SET IRES=-1 IF AN INPUT VALUE
C OF Y IS ILLEGAL, AND SDASTP WILL TRY TO SOLVE
C THE PROBLEM WITHOUT GETTING IRES = -1. IF
C IRES=-2, SDASTP RETURNS CONTROL TO THE CALLING
C PROGRAM WITH IDID = -11.
C JAC -- EXTERNAL USER-SUPPLIED ROUTINE TO EVALUATE
C THE ITERATION MATRIX (THIS IS OPTIONAL)
C THE CALL IS OF THE FORM
C CALL JAC(X,Y,YPRIME,PD,CJ,RPAR,IPAR)
C PD IS THE MATRIX OF PARTIAL DERIVATIVES,
C PD=DG/DY+CJ*DG/DYPRIME
C H -- APPROPRIATE STEP SIZE FOR NEXT STEP.
C NORMALLY DETERMINED BY THE CODE
C WT -- VECTOR OF WEIGHTS FOR ERROR CRITERION.
C JSTART -- INTEGER VARIABLE SET 0 FOR
C FIRST STEP, 1 OTHERWISE.
C IDID -- COMPLETION CODE WITH THE FOLLOWING MEANINGS:
C IDID= 1 -- THE STEP WAS COMPLETED SUCCESSFULLY
C IDID=-6 -- THE ERROR TEST FAILED REPEATEDLY
C IDID=-7 -- THE CORRECTOR COULD NOT CONVERGE
C IDID=-8 -- THE ITERATION MATRIX IS SINGULAR
C IDID=-9 -- THE CORRECTOR COULD NOT CONVERGE.
C THERE WERE REPEATED ERROR TEST
C FAILURES ON THIS STEP.
C IDID=-10-- THE CORRECTOR COULD NOT CONVERGE
C BECAUSE IRES WAS EQUAL TO MINUS ONE
C IDID=-11-- IRES EQUAL TO -2 WAS ENCOUNTERED,
C AND CONTROL IS BEING RETURNED TO
C THE CALLING PROGRAM
C RPAR,IPAR -- REAL AND INTEGER PARAMETER ARRAYS THAT
C ARE USED FOR COMMUNICATION BETWEEN THE
C CALLING PROGRAM AND EXTERNAL USER ROUTINES
C THEY ARE NOT ALTERED BY SDASTP
C PHI -- ARRAY OF DIVIDED DIFFERENCES USED BY
C SDASTP. THE LENGTH IS NEQ*(K+1),WHERE
C K IS THE MAXIMUM ORDER
C DELTA,E -- WORK VECTORS FOR SDASTP OF LENGTH NEQ
C WM,IWM -- REAL AND INTEGER ARRAYS STORING
C MATRIX INFORMATION SUCH AS THE MATRIX
C OF PARTIAL DERIVATIVES,PERMUTATION
C VECTOR, AND VARIOUS OTHER INFORMATION.
C
C THE OTHER PARAMETERS ARE INFORMATION
C WHICH IS NEEDED INTERNALLY BY SDASTP TO
C CONTINUE FROM STEP TO STEP.
C
C-----------------------------------------------------------------------
C***ROUTINES CALLED SDAJAC, SDANRM, SDASLV, SDATRP
C***REVISION HISTORY (YYMMDD)
C 830315 DATE WRITTEN
C 901009 Finished conversion to SLATEC 4.0 format (F.N.Fritsch)
C 901019 Merged changes made by C. Ulrich with SLATEC 4.0 format.
C 901026 Added explicit declarations for all variables and minor
C cosmetic changes to prologue. (FNF)
C***END PROLOGUE SDASTP
C
INTEGER NEQ, JSTART, IDID, IPAR(*), IWM(*), IPHASE, JCALC, K,
* KOLD, NS, NONNEG, NTEMP
REAL X, Y(*), YPRIME(*), H, WT(*), RPAR(*), PHI(NEQ,*), DELTA(*),
* E(*), WM(*), ALPHA(*), BETA(*), GAMMA(*), PSI(*), SIGMA(*), CJ,
* CJOLD, HOLD, S, HMIN, UROUND
EXTERNAL RES, JAC
C
EXTERNAL SDAJAC, SDANRM, SDASLV, SDATRP
REAL SDANRM
C
INTEGER I, IER, IRES, J, J1, KDIFF, KM1, KNEW, KP1, KP2, LCTF,
* LETF, LMXORD, LNJE, LNRE, LNST, M, MAXIT, NCF, NEF, NSF, NSP1
REAL ALPHA0, ALPHAS, CJLAST, CK, DELNRM, ENORM, ERK, ERKM1,
* ERKM2, ERKP1, ERR, EST, HNEW, OLDNRM, PNORM, R, RATE, TEMP1,
* TEMP2, TERK, TERKM1, TERKM2, TERKP1, XOLD, XRATE
LOGICAL CONVGD
C
PARAMETER (LMXORD=3)
PARAMETER (LNST=11)
PARAMETER (LNRE=12)
PARAMETER (LNJE=13)
PARAMETER (LETF=14)
PARAMETER (LCTF=15)
C
DATA MAXIT/4/
DATA XRATE/0.25E0/
C
C
C
C
C
C-----------------------------------------------------------------------
C BLOCK 1.
C INITIALIZE. ON THE FIRST CALL,SET
C THE ORDER TO 1 AND INITIALIZE
C OTHER VARIABLES.
C-----------------------------------------------------------------------
C
C INITIALIZATIONS FOR ALL CALLS
C***FIRST EXECUTABLE STATEMENT SDASTP
IDID=1
XOLD=X
NCF=0
NSF=0
NEF=0
IF(JSTART .NE. 0) GO TO 120
C
C IF THIS IS THE FIRST STEP,PERFORM
C OTHER INITIALIZATIONS
IWM(LETF) = 0
IWM(LCTF) = 0
K=1
KOLD=0
HOLD=0.0E0
JSTART=1
PSI(1)=H
CJOLD = 1.0E0/H
CJ = CJOLD
S = 100.E0
JCALC = -1
DELNRM=1.0E0
IPHASE = 0
NS=0
120 CONTINUE
C
C
C
C
C
C-----------------------------------------------------------------------
C BLOCK 2
C COMPUTE COEFFICIENTS OF FORMULAS FOR
C THIS STEP.
C-----------------------------------------------------------------------
200 CONTINUE
KP1=K+1
KP2=K+2
KM1=K-1
XOLD=X
IF(H.NE.HOLD.OR.K .NE. KOLD) NS = 0
NS=MIN(NS+1,KOLD+2)
NSP1=NS+1
IF(KP1 .LT. NS)GO TO 230
C
BETA(1)=1.0E0
ALPHA(1)=1.0E0
TEMP1=H
GAMMA(1)=0.0E0
SIGMA(1)=1.0E0
DO 210 I=2,KP1
TEMP2=PSI(I-1)
PSI(I-1)=TEMP1
BETA(I)=BETA(I-1)*PSI(I-1)/TEMP2
TEMP1=TEMP2+H
ALPHA(I)=H/TEMP1
SIGMA(I)=(I-1)*SIGMA(I-1)*ALPHA(I)
GAMMA(I)=GAMMA(I-1)+ALPHA(I-1)/H
210 CONTINUE
PSI(KP1)=TEMP1
230 CONTINUE
C
C COMPUTE ALPHAS, ALPHA0
ALPHAS = 0.0E0
ALPHA0 = 0.0E0
DO 240 I = 1,K
ALPHAS = ALPHAS - 1.0E0/I
ALPHA0 = ALPHA0 - ALPHA(I)
240 CONTINUE
C
C COMPUTE LEADING COEFFICIENT CJ
CJLAST = CJ
CJ = -ALPHAS/H
C
C COMPUTE VARIABLE STEPSIZE ERROR COEFFICIENT CK
CK = ABS(ALPHA(KP1) + ALPHAS - ALPHA0)
CK = MAX(CK,ALPHA(KP1))
C
C DECIDE WHETHER NEW JACOBIAN IS NEEDED
TEMP1 = (1.0E0 - XRATE)/(1.0E0 + XRATE)
TEMP2 = 1.0E0/TEMP1
IF (CJ/CJOLD .LT. TEMP1 .OR. CJ/CJOLD .GT. TEMP2) JCALC = -1
IF (CJ .NE. CJLAST) S = 100.E0
C
C CHANGE PHI TO PHI STAR
IF(KP1 .LT. NSP1) GO TO 280
DO 270 J=NSP1,KP1
DO 260 I=1,NEQ
260 PHI(I,J)=BETA(J)*PHI(I,J)
270 CONTINUE
280 CONTINUE
C
C UPDATE TIME
X=X+H
C
C
C
C
C
C-----------------------------------------------------------------------
C BLOCK 3
C PREDICT THE SOLUTION AND DERIVATIVE,
C AND SOLVE THE CORRECTOR EQUATION
C-----------------------------------------------------------------------
C
C FIRST,PREDICT THE SOLUTION AND DERIVATIVE
300 CONTINUE
DO 310 I=1,NEQ
Y(I)=PHI(I,1)
310 YPRIME(I)=0.0E0
DO 330 J=2,KP1
DO 320 I=1,NEQ
Y(I)=Y(I)+PHI(I,J)
320 YPRIME(I)=YPRIME(I)+GAMMA(J)*PHI(I,J)
330 CONTINUE
PNORM = SDANRM (NEQ,Y,WT,RPAR,IPAR)
C
C
C
C SOLVE THE CORRECTOR EQUATION USING A
C MODIFIED NEWTON SCHEME.
CONVGD= .TRUE.
M=0
IWM(LNRE)=IWM(LNRE)+1
IRES = 0
CALL RES(X,Y,YPRIME,DELTA,IRES,RPAR,IPAR)
IF (IRES .LT. 0) GO TO 380
C
C
C IF INDICATED,REEVALUATE THE
C ITERATION MATRIX PD = DG/DY + CJ*DG/DYPRIME
C (WHERE G(X,Y,YPRIME)=0). SET
C JCALC TO 0 AS AN INDICATOR THAT
C THIS HAS BEEN DONE.
IF(JCALC .NE. -1)GO TO 340
IWM(LNJE)=IWM(LNJE)+1
JCALC=0
CALL SDAJAC(NEQ,X,Y,YPRIME,DELTA,CJ,H,
* IER,WT,E,WM,IWM,RES,IRES,UROUND,JAC,RPAR,
* IPAR,NTEMP)
CJOLD=CJ
S = 100.E0
IF (IRES .LT. 0) GO TO 380
IF(IER .NE. 0)GO TO 380
NSF=0
C
C
C INITIALIZE THE ERROR ACCUMULATION VECTOR E.
340 CONTINUE
DO 345 I=1,NEQ
345 E(I)=0.0E0
C
C
C CORRECTOR LOOP.
350 CONTINUE
C
C MULTIPLY RESIDUAL BY TEMP1 TO ACCELERATE CONVERGENCE
TEMP1 = 2.0E0/(1.0E0 + CJ/CJOLD)
DO 355 I = 1,NEQ
355 DELTA(I) = DELTA(I) * TEMP1
C
C COMPUTE A NEW ITERATE (BACK-SUBSTITUTION).
C STORE THE CORRECTION IN DELTA.
CALL SDASLV(NEQ,DELTA,WM,IWM)
C
C UPDATE Y, E, AND YPRIME
DO 360 I=1,NEQ
Y(I)=Y(I)-DELTA(I)
E(I)=E(I)-DELTA(I)
360 YPRIME(I)=YPRIME(I)-CJ*DELTA(I)
C
C TEST FOR CONVERGENCE OF THE ITERATION
DELNRM=SDANRM(NEQ,DELTA,WT,RPAR,IPAR)
IF (DELNRM .LE. 100.E0*UROUND*PNORM) GO TO 375
IF (M .GT. 0) GO TO 365
OLDNRM = DELNRM
GO TO 367
365 RATE = (DELNRM/OLDNRM)**(1.0E0/M)
IF (RATE .GT. 0.90E0) GO TO 370
S = RATE/(1.0E0 - RATE)
367 IF (S*DELNRM .LE. 0.33E0) GO TO 375
C
C THE CORRECTOR HAS NOT YET CONVERGED.
C UPDATE M AND TEST WHETHER THE
C MAXIMUM NUMBER OF ITERATIONS HAVE
C BEEN TRIED.
M=M+1
IF(M.GE.MAXIT)GO TO 370
C
C EVALUATE THE RESIDUAL
C AND GO BACK TO DO ANOTHER ITERATION
IWM(LNRE)=IWM(LNRE)+1
IRES = 0
CALL RES(X,Y,YPRIME,DELTA,IRES,
* RPAR,IPAR)
IF (IRES .LT. 0) GO TO 380
GO TO 350
C
C
C THE CORRECTOR FAILED TO CONVERGE IN MAXIT
C ITERATIONS. IF THE ITERATION MATRIX
C IS NOT CURRENT,RE-DO THE STEP WITH
C A NEW ITERATION MATRIX.
370 CONTINUE
IF(JCALC.EQ.0)GO TO 380
JCALC=-1
GO TO 300
C
C
C THE ITERATION HAS CONVERGED. IF NONNEGATIVITY OF SOLUTION IS
C REQUIRED, SET THE SOLUTION NONNEGATIVE, IF THE PERTURBATION
C TO DO IT IS SMALL ENOUGH. IF THE CHANGE IS TOO LARGE, THEN
C CONSIDER THE CORRECTOR ITERATION TO HAVE FAILED.
375 IF(NONNEG .EQ. 0) GO TO 390
DO 377 I = 1,NEQ
377 DELTA(I) = MIN(Y(I),0.0E0)
DELNRM = SDANRM(NEQ,DELTA,WT,RPAR,IPAR)
IF(DELNRM .GT. 0.33E0) GO TO 380
DO 378 I = 1,NEQ
378 E(I) = E(I) - DELTA(I)
GO TO 390
C
C
C EXITS FROM BLOCK 3
C NO CONVERGENCE WITH CURRENT ITERATION
C MATRIX,OR SINGULAR ITERATION MATRIX
380 CONVGD= .FALSE.
390 JCALC = 1
IF(.NOT.CONVGD)GO TO 600
C
C
C
C
C
C-----------------------------------------------------------------------
C BLOCK 4
C ESTIMATE THE ERRORS AT ORDERS K,K-1,K-2
C AS IF CONSTANT STEPSIZE WAS USED. ESTIMATE
C THE LOCAL ERROR AT ORDER K AND TEST
C WHETHER THE CURRENT STEP IS SUCCESSFUL.
C-----------------------------------------------------------------------
C
C ESTIMATE ERRORS AT ORDERS K,K-1,K-2
ENORM = SDANRM(NEQ,E,WT,RPAR,IPAR)
ERK = SIGMA(K+1)*ENORM
TERK = (K+1)*ERK
EST = ERK
KNEW=K
IF(K .EQ. 1)GO TO 430
DO 405 I = 1,NEQ
405 DELTA(I) = PHI(I,KP1) + E(I)
ERKM1=SIGMA(K)*SDANRM(NEQ,DELTA,WT,RPAR,IPAR)
TERKM1 = K*ERKM1
IF(K .GT. 2)GO TO 410
IF(TERKM1 .LE. 0.5E0*TERK)GO TO 420
GO TO 430
410 CONTINUE
DO 415 I = 1,NEQ
415 DELTA(I) = PHI(I,K) + DELTA(I)
ERKM2=SIGMA(K-1)*SDANRM(NEQ,DELTA,WT,RPAR,IPAR)
TERKM2 = (K-1)*ERKM2
IF(MAX(TERKM1,TERKM2).GT.TERK)GO TO 430
C LOWER THE ORDER
420 CONTINUE
KNEW=K-1
EST = ERKM1
C
C
C CALCULATE THE LOCAL ERROR FOR THE CURRENT STEP
C TO SEE IF THE STEP WAS SUCCESSFUL
430 CONTINUE
ERR = CK * ENORM
IF(ERR .GT. 1.0E0)GO TO 600
C
C
C
C
C
C-----------------------------------------------------------------------
C BLOCK 5
C THE STEP IS SUCCESSFUL. DETERMINE
C THE BEST ORDER AND STEPSIZE FOR
C THE NEXT STEP. UPDATE THE DIFFERENCES
C FOR THE NEXT STEP.
C-----------------------------------------------------------------------
IDID=1
IWM(LNST)=IWM(LNST)+1
KDIFF=K-KOLD
KOLD=K
HOLD=H
C
C
C ESTIMATE THE ERROR AT ORDER K+1 UNLESS:
C ALREADY DECIDED TO LOWER ORDER, OR
C ALREADY USING MAXIMUM ORDER, OR
C STEPSIZE NOT CONSTANT, OR
C ORDER RAISED IN PREVIOUS STEP
IF(KNEW.EQ.KM1.OR.K.EQ.IWM(LMXORD))IPHASE=1
IF(IPHASE .EQ. 0)GO TO 545
IF(KNEW.EQ.KM1)GO TO 540
IF(K.EQ.IWM(LMXORD)) GO TO 550
IF(KP1.GE.NS.OR.KDIFF.EQ.1)GO TO 550
DO 510 I=1,NEQ
510 DELTA(I)=E(I)-PHI(I,KP2)
ERKP1 = (1.0E0/(K+2))*SDANRM(NEQ,DELTA,WT,RPAR,IPAR)
TERKP1 = (K+2)*ERKP1
IF(K.GT.1)GO TO 520
IF(TERKP1.GE.0.5E0*TERK)GO TO 550
GO TO 530
520 IF(TERKM1.LE.MIN(TERK,TERKP1))GO TO 540
IF(TERKP1.GE.TERK.OR.K.EQ.IWM(LMXORD))GO TO 550
C
C RAISE ORDER
530 K=KP1
EST = ERKP1
GO TO 550
C
C LOWER ORDER
540 K=KM1
EST = ERKM1
GO TO 550
C
C IF IPHASE = 0, INCREASE ORDER BY ONE AND MULTIPLY STEPSIZE BY
C FACTOR TWO
545 K = KP1
HNEW = H*2.0E0
H = HNEW
GO TO 575
C
C
C DETERMINE THE APPROPRIATE STEPSIZE FOR
C THE NEXT STEP.
550 HNEW=H
TEMP2=K+1
R=(2.0E0*EST+0.0001E0)**(-1.0E0/TEMP2)
IF(R .LT. 2.0E0) GO TO 555
HNEW = 2.0E0*H
GO TO 560
555 IF(R .GT. 1.0E0) GO TO 560
R = MAX(0.5E0,MIN(0.9E0,R))
HNEW = H*R
560 H=HNEW
C
C
C UPDATE DIFFERENCES FOR NEXT STEP
575 CONTINUE
IF(KOLD.EQ.IWM(LMXORD))GO TO 585
DO 580 I=1,NEQ
580 PHI(I,KP2)=E(I)
585 CONTINUE
DO 590 I=1,NEQ
590 PHI(I,KP1)=PHI(I,KP1)+E(I)
DO 595 J1=2,KP1
J=KP1-J1+1
DO 595 I=1,NEQ
595 PHI(I,J)=PHI(I,J)+PHI(I,J+1)
RETURN
C
C
C
C
C
C-----------------------------------------------------------------------
C BLOCK 6
C THE STEP IS UNSUCCESSFUL. RESTORE X,PSI,PHI
C DETERMINE APPROPRIATE STEPSIZE FOR
C CONTINUING THE INTEGRATION, OR EXIT WITH
C AN ERROR FLAG IF THERE HAVE BEEN MANY
C FAILURES.
C-----------------------------------------------------------------------
600 IPHASE = 1
C
C RESTORE X,PHI,PSI
X=XOLD
IF(KP1.LT.NSP1)GO TO 630
DO 620 J=NSP1,KP1
TEMP1=1.0E0/BETA(J)
DO 610 I=1,NEQ
610 PHI(I,J)=TEMP1*PHI(I,J)
620 CONTINUE
630 CONTINUE
DO 640 I=2,KP1
640 PSI(I-1)=PSI(I)-H
C
C
C TEST WHETHER FAILURE IS DUE TO CORRECTOR ITERATION
C OR ERROR TEST
IF(CONVGD)GO TO 660
IWM(LCTF)=IWM(LCTF)+1
C
C
C THE NEWTON ITERATION FAILED TO CONVERGE WITH
C A CURRENT ITERATION MATRIX. DETERMINE THE CAUSE
C OF THE FAILURE AND TAKE APPROPRIATE ACTION.
IF(IER.EQ.0)GO TO 650
C
C THE ITERATION MATRIX IS SINGULAR. REDUCE
C THE STEPSIZE BY A FACTOR OF 4. IF
C THIS HAPPENS THREE TIMES IN A ROW ON
C THE SAME STEP, RETURN WITH AN ERROR FLAG
NSF=NSF+1
R = 0.25E0
H=H*R
IF (NSF .LT. 3 .AND. ABS(H) .GE. HMIN) GO TO 690
IDID=-8
GO TO 675
C
C
C THE NEWTON ITERATION FAILED TO CONVERGE FOR A REASON
C OTHER THAN A SINGULAR ITERATION MATRIX. IF IRES = -2, THEN
C RETURN. OTHERWISE, REDUCE THE STEPSIZE AND TRY AGAIN, UNLESS
C TOO MANY FAILURES HAVE OCCURRED.
650 CONTINUE
IF (IRES .GT. -2) GO TO 655
IDID = -11
GO TO 675
655 NCF = NCF + 1
R = 0.25E0
H = H*R
IF (NCF .LT. 10 .AND. ABS(H) .GE. HMIN) GO TO 690
IDID = -7
IF (IRES .LT. 0) IDID = -10
IF (NEF .GE. 3) IDID = -9
GO TO 675
C
C
C THE NEWTON SCHEME CONVERGED, AND THE CAUSE
C OF THE FAILURE WAS THE ERROR ESTIMATE
C EXCEEDING THE TOLERANCE.
660 NEF=NEF+1
IWM(LETF)=IWM(LETF)+1
IF (NEF .GT. 1) GO TO 665
C
C ON FIRST ERROR TEST FAILURE, KEEP CURRENT ORDER OR LOWER
C ORDER BY ONE. COMPUTE NEW STEPSIZE BASED ON DIFFERENCES
C OF THE SOLUTION.
K = KNEW
TEMP2 = K + 1
R = 0.90E0*(2.0E0*EST+0.0001E0)**(-1.0E0/TEMP2)
R = MAX(0.25E0,MIN(0.9E0,R))
H = H*R
IF (ABS(H) .GE. HMIN) GO TO 690
IDID = -6
GO TO 675
C
C ON SECOND ERROR TEST FAILURE, USE THE CURRENT ORDER OR
C DECREASE ORDER BY ONE. REDUCE THE STEPSIZE BY A FACTOR OF
C FOUR.
665 IF (NEF .GT. 2) GO TO 670
K = KNEW
H = 0.25E0*H
IF (ABS(H) .GE. HMIN) GO TO 690
IDID = -6
GO TO 675
C
C ON THIRD AND SUBSEQUENT ERROR TEST FAILURES, SET THE ORDER TO
C ONE AND REDUCE THE STEPSIZE BY A FACTOR OF FOUR.
670 K = 1
H = 0.25E0*H
IF (ABS(H) .GE. HMIN) GO TO 690
IDID = -6
GO TO 675
C
C
C
C
C FOR ALL CRASHES, RESTORE Y TO ITS LAST VALUE,
C INTERPOLATE TO FIND YPRIME AT LAST X, AND RETURN
675 CONTINUE
CALL SDATRP(X,X,Y,YPRIME,NEQ,K,PHI,PSI)
RETURN
C
C
C GO BACK AND TRY THIS STEP AGAIN
690 GO TO 200
C
C------END OF SUBROUTINE SDASTP------
END