mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 11:12:29 +01:00
279 lines
8.8 KiB
FortranFixed
279 lines
8.8 KiB
FortranFixed
|
*DECK SGBCO
|
||
|
SUBROUTINE SGBCO (ABD, LDA, N, ML, MU, IPVT, RCOND, Z)
|
||
|
C***BEGIN PROLOGUE SGBCO
|
||
|
C***PURPOSE Factor a band matrix by Gaussian elimination and
|
||
|
C estimate the condition number of the matrix.
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2A2
|
||
|
C***TYPE SINGLE PRECISION (SGBCO-S, DGBCO-D, CGBCO-C)
|
||
|
C***KEYWORDS BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
|
||
|
C MATRIX FACTORIZATION
|
||
|
C***AUTHOR Moler, C. B., (U. of New Mexico)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C SBGCO factors a real band matrix by Gaussian
|
||
|
C elimination and estimates the condition of the matrix.
|
||
|
C
|
||
|
C If RCOND is not needed, SGBFA is slightly faster.
|
||
|
C To solve A*X = B , follow SBGCO by SGBSL.
|
||
|
C To compute INVERSE(A)*C , follow SBGCO by SGBSL.
|
||
|
C To compute DETERMINANT(A) , follow SBGCO by SGBDI.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C ABD REAL(LDA, N)
|
||
|
C contains the matrix in band storage. The columns
|
||
|
C of the matrix are stored in the columns of ABD and
|
||
|
C the diagonals of the matrix are stored in rows
|
||
|
C ML+1 through 2*ML+MU+1 of ABD .
|
||
|
C See the comments below for details.
|
||
|
C
|
||
|
C LDA INTEGER
|
||
|
C the leading dimension of the array ABD .
|
||
|
C LDA must be .GE. 2*ML + MU + 1 .
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the original matrix.
|
||
|
C
|
||
|
C ML INTEGER
|
||
|
C number of diagonals below the main diagonal.
|
||
|
C 0 .LE. ML .LT. N .
|
||
|
C
|
||
|
C MU INTEGER
|
||
|
C number of diagonals above the main diagonal.
|
||
|
C 0 .LE. MU .LT. N .
|
||
|
C More efficient if ML .LE. MU .
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C ABD an upper triangular matrix in band storage and
|
||
|
C the multipliers which were used to obtain it.
|
||
|
C The factorization can be written A = L*U where
|
||
|
C L is a product of permutation and unit lower
|
||
|
C triangular matrices and U is upper triangular.
|
||
|
C
|
||
|
C IPVT INTEGER(N)
|
||
|
C an integer vector of pivot indices.
|
||
|
C
|
||
|
C RCOND REAL
|
||
|
C an estimate of the reciprocal condition of A .
|
||
|
C For the system A*X = B , relative perturbations
|
||
|
C in A and B of size EPSILON may cause
|
||
|
C relative perturbations in X of size EPSILON/RCOND .
|
||
|
C If RCOND is so small that the logical expression
|
||
|
C 1.0 + RCOND .EQ. 1.0
|
||
|
C is true, then A may be singular to working
|
||
|
C precision. In particular, RCOND is zero if
|
||
|
C exact singularity is detected or the estimate
|
||
|
C underflows.
|
||
|
C
|
||
|
C Z REAL(N)
|
||
|
C a work vector whose contents are usually unimportant.
|
||
|
C If A is close to a singular matrix, then Z is
|
||
|
C an approximate null vector in the sense that
|
||
|
C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
|
||
|
C
|
||
|
C Band Storage
|
||
|
C
|
||
|
C If A is a band matrix, the following program segment
|
||
|
C will set up the input.
|
||
|
C
|
||
|
C ML = (band width below the diagonal)
|
||
|
C MU = (band width above the diagonal)
|
||
|
C M = ML + MU + 1
|
||
|
C DO 20 J = 1, N
|
||
|
C I1 = MAX(1, J-MU)
|
||
|
C I2 = MIN(N, J+ML)
|
||
|
C DO 10 I = I1, I2
|
||
|
C K = I - J + M
|
||
|
C ABD(K,J) = A(I,J)
|
||
|
C 10 CONTINUE
|
||
|
C 20 CONTINUE
|
||
|
C
|
||
|
C This uses rows ML+1 through 2*ML+MU+1 of ABD .
|
||
|
C In addition, the first ML rows in ABD are used for
|
||
|
C elements generated during the triangularization.
|
||
|
C The total number of rows needed in ABD is 2*ML+MU+1 .
|
||
|
C The ML+MU by ML+MU upper left triangle and the
|
||
|
C ML by ML lower right triangle are not referenced.
|
||
|
C
|
||
|
C Example: If the original matrix is
|
||
|
C
|
||
|
C 11 12 13 0 0 0
|
||
|
C 21 22 23 24 0 0
|
||
|
C 0 32 33 34 35 0
|
||
|
C 0 0 43 44 45 46
|
||
|
C 0 0 0 54 55 56
|
||
|
C 0 0 0 0 65 66
|
||
|
C
|
||
|
C then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABD should contain
|
||
|
C
|
||
|
C * * * + + + , * = not used
|
||
|
C * * 13 24 35 46 , + = used for pivoting
|
||
|
C * 12 23 34 45 56
|
||
|
C 11 22 33 44 55 66
|
||
|
C 21 32 43 54 65 *
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED SASUM, SAXPY, SDOT, SGBFA, SSCAL
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE SGBCO
|
||
|
INTEGER LDA,N,ML,MU,IPVT(*)
|
||
|
REAL ABD(LDA,*),Z(*)
|
||
|
REAL RCOND
|
||
|
C
|
||
|
REAL SDOT,EK,T,WK,WKM
|
||
|
REAL ANORM,S,SASUM,SM,YNORM
|
||
|
INTEGER IS,INFO,J,JU,K,KB,KP1,L,LA,LM,LZ,M,MM
|
||
|
C
|
||
|
C COMPUTE 1-NORM OF A
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT SGBCO
|
||
|
ANORM = 0.0E0
|
||
|
L = ML + 1
|
||
|
IS = L + MU
|
||
|
DO 10 J = 1, N
|
||
|
ANORM = MAX(ANORM,SASUM(L,ABD(IS,J),1))
|
||
|
IF (IS .GT. ML + 1) IS = IS - 1
|
||
|
IF (J .LE. MU) L = L + 1
|
||
|
IF (J .GE. N - ML) L = L - 1
|
||
|
10 CONTINUE
|
||
|
C
|
||
|
C FACTOR
|
||
|
C
|
||
|
CALL SGBFA(ABD,LDA,N,ML,MU,IPVT,INFO)
|
||
|
C
|
||
|
C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
|
||
|
C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND TRANS(A)*Y = E .
|
||
|
C TRANS(A) IS THE TRANSPOSE OF A . THE COMPONENTS OF E ARE
|
||
|
C CHOSEN TO CAUSE MAXIMUM LOCAL GROWTH IN THE ELEMENTS OF W WHERE
|
||
|
C TRANS(U)*W = E . THE VECTORS ARE FREQUENTLY RESCALED TO AVOID
|
||
|
C OVERFLOW.
|
||
|
C
|
||
|
C SOLVE TRANS(U)*W = E
|
||
|
C
|
||
|
EK = 1.0E0
|
||
|
DO 20 J = 1, N
|
||
|
Z(J) = 0.0E0
|
||
|
20 CONTINUE
|
||
|
M = ML + MU + 1
|
||
|
JU = 0
|
||
|
DO 100 K = 1, N
|
||
|
IF (Z(K) .NE. 0.0E0) EK = SIGN(EK,-Z(K))
|
||
|
IF (ABS(EK-Z(K)) .LE. ABS(ABD(M,K))) GO TO 30
|
||
|
S = ABS(ABD(M,K))/ABS(EK-Z(K))
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
EK = S*EK
|
||
|
30 CONTINUE
|
||
|
WK = EK - Z(K)
|
||
|
WKM = -EK - Z(K)
|
||
|
S = ABS(WK)
|
||
|
SM = ABS(WKM)
|
||
|
IF (ABD(M,K) .EQ. 0.0E0) GO TO 40
|
||
|
WK = WK/ABD(M,K)
|
||
|
WKM = WKM/ABD(M,K)
|
||
|
GO TO 50
|
||
|
40 CONTINUE
|
||
|
WK = 1.0E0
|
||
|
WKM = 1.0E0
|
||
|
50 CONTINUE
|
||
|
KP1 = K + 1
|
||
|
JU = MIN(MAX(JU,MU+IPVT(K)),N)
|
||
|
MM = M
|
||
|
IF (KP1 .GT. JU) GO TO 90
|
||
|
DO 60 J = KP1, JU
|
||
|
MM = MM - 1
|
||
|
SM = SM + ABS(Z(J)+WKM*ABD(MM,J))
|
||
|
Z(J) = Z(J) + WK*ABD(MM,J)
|
||
|
S = S + ABS(Z(J))
|
||
|
60 CONTINUE
|
||
|
IF (S .GE. SM) GO TO 80
|
||
|
T = WKM - WK
|
||
|
WK = WKM
|
||
|
MM = M
|
||
|
DO 70 J = KP1, JU
|
||
|
MM = MM - 1
|
||
|
Z(J) = Z(J) + T*ABD(MM,J)
|
||
|
70 CONTINUE
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
Z(K) = WK
|
||
|
100 CONTINUE
|
||
|
S = 1.0E0/SASUM(N,Z,1)
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
C
|
||
|
C SOLVE TRANS(L)*Y = W
|
||
|
C
|
||
|
DO 120 KB = 1, N
|
||
|
K = N + 1 - KB
|
||
|
LM = MIN(ML,N-K)
|
||
|
IF (K .LT. N) Z(K) = Z(K) + SDOT(LM,ABD(M+1,K),1,Z(K+1),1)
|
||
|
IF (ABS(Z(K)) .LE. 1.0E0) GO TO 110
|
||
|
S = 1.0E0/ABS(Z(K))
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
110 CONTINUE
|
||
|
L = IPVT(K)
|
||
|
T = Z(L)
|
||
|
Z(L) = Z(K)
|
||
|
Z(K) = T
|
||
|
120 CONTINUE
|
||
|
S = 1.0E0/SASUM(N,Z,1)
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
C
|
||
|
YNORM = 1.0E0
|
||
|
C
|
||
|
C SOLVE L*V = Y
|
||
|
C
|
||
|
DO 140 K = 1, N
|
||
|
L = IPVT(K)
|
||
|
T = Z(L)
|
||
|
Z(L) = Z(K)
|
||
|
Z(K) = T
|
||
|
LM = MIN(ML,N-K)
|
||
|
IF (K .LT. N) CALL SAXPY(LM,T,ABD(M+1,K),1,Z(K+1),1)
|
||
|
IF (ABS(Z(K)) .LE. 1.0E0) GO TO 130
|
||
|
S = 1.0E0/ABS(Z(K))
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
S = 1.0E0/SASUM(N,Z,1)
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
C
|
||
|
C SOLVE U*Z = W
|
||
|
C
|
||
|
DO 160 KB = 1, N
|
||
|
K = N + 1 - KB
|
||
|
IF (ABS(Z(K)) .LE. ABS(ABD(M,K))) GO TO 150
|
||
|
S = ABS(ABD(M,K))/ABS(Z(K))
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
150 CONTINUE
|
||
|
IF (ABD(M,K) .NE. 0.0E0) Z(K) = Z(K)/ABD(M,K)
|
||
|
IF (ABD(M,K) .EQ. 0.0E0) Z(K) = 1.0E0
|
||
|
LM = MIN(K,M) - 1
|
||
|
LA = M - LM
|
||
|
LZ = K - LM
|
||
|
T = -Z(K)
|
||
|
CALL SAXPY(LM,T,ABD(LA,K),1,Z(LZ),1)
|
||
|
160 CONTINUE
|
||
|
C MAKE ZNORM = 1.0
|
||
|
S = 1.0E0/SASUM(N,Z,1)
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
C
|
||
|
IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
|
||
|
IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
|
||
|
RETURN
|
||
|
END
|