mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 11:12:29 +01:00
132 lines
3.7 KiB
FortranFixed
132 lines
3.7 KiB
FortranFixed
|
*DECK SGTSL
|
||
|
SUBROUTINE SGTSL (N, C, D, E, B, INFO)
|
||
|
C***BEGIN PROLOGUE SGTSL
|
||
|
C***PURPOSE Solve a tridiagonal linear system.
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2A2A
|
||
|
C***TYPE SINGLE PRECISION (SGTSL-S, DGTSL-D, CGTSL-C)
|
||
|
C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, TRIDIAGONAL
|
||
|
C***AUTHOR Dongarra, J., (ANL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C SGTSL given a general tridiagonal matrix and a right hand
|
||
|
C side will find the solution.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C is the order of the tridiagonal matrix.
|
||
|
C
|
||
|
C C REAL(N)
|
||
|
C is the subdiagonal of the tridiagonal matrix.
|
||
|
C C(2) through C(N) should contain the subdiagonal.
|
||
|
C On output, C is destroyed.
|
||
|
C
|
||
|
C D REAL(N)
|
||
|
C is the diagonal of the tridiagonal matrix.
|
||
|
C On output, D is destroyed.
|
||
|
C
|
||
|
C E REAL(N)
|
||
|
C is the superdiagonal of the tridiagonal matrix.
|
||
|
C E(1) through E(N-1) should contain the superdiagonal.
|
||
|
C On output, E is destroyed.
|
||
|
C
|
||
|
C B REAL(N)
|
||
|
C is the right hand side vector.
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C B is the solution vector.
|
||
|
C
|
||
|
C INFO INTEGER
|
||
|
C = 0 normal value.
|
||
|
C = K if the K-th element of the diagonal becomes
|
||
|
C exactly zero. The subroutine returns when
|
||
|
C this is detected.
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE SGTSL
|
||
|
INTEGER N,INFO
|
||
|
REAL C(*),D(*),E(*),B(*)
|
||
|
C
|
||
|
INTEGER K,KB,KP1,NM1,NM2
|
||
|
REAL T
|
||
|
C***FIRST EXECUTABLE STATEMENT SGTSL
|
||
|
INFO = 0
|
||
|
C(1) = D(1)
|
||
|
NM1 = N - 1
|
||
|
IF (NM1 .LT. 1) GO TO 40
|
||
|
D(1) = E(1)
|
||
|
E(1) = 0.0E0
|
||
|
E(N) = 0.0E0
|
||
|
C
|
||
|
DO 30 K = 1, NM1
|
||
|
KP1 = K + 1
|
||
|
C
|
||
|
C FIND THE LARGEST OF THE TWO ROWS
|
||
|
C
|
||
|
IF (ABS(C(KP1)) .LT. ABS(C(K))) GO TO 10
|
||
|
C
|
||
|
C INTERCHANGE ROW
|
||
|
C
|
||
|
T = C(KP1)
|
||
|
C(KP1) = C(K)
|
||
|
C(K) = T
|
||
|
T = D(KP1)
|
||
|
D(KP1) = D(K)
|
||
|
D(K) = T
|
||
|
T = E(KP1)
|
||
|
E(KP1) = E(K)
|
||
|
E(K) = T
|
||
|
T = B(KP1)
|
||
|
B(KP1) = B(K)
|
||
|
B(K) = T
|
||
|
10 CONTINUE
|
||
|
C
|
||
|
C ZERO ELEMENTS
|
||
|
C
|
||
|
IF (C(K) .NE. 0.0E0) GO TO 20
|
||
|
INFO = K
|
||
|
GO TO 100
|
||
|
20 CONTINUE
|
||
|
T = -C(KP1)/C(K)
|
||
|
C(KP1) = D(KP1) + T*D(K)
|
||
|
D(KP1) = E(KP1) + T*E(K)
|
||
|
E(KP1) = 0.0E0
|
||
|
B(KP1) = B(KP1) + T*B(K)
|
||
|
30 CONTINUE
|
||
|
40 CONTINUE
|
||
|
IF (C(N) .NE. 0.0E0) GO TO 50
|
||
|
INFO = N
|
||
|
GO TO 90
|
||
|
50 CONTINUE
|
||
|
C
|
||
|
C BACK SOLVE
|
||
|
C
|
||
|
NM2 = N - 2
|
||
|
B(N) = B(N)/C(N)
|
||
|
IF (N .EQ. 1) GO TO 80
|
||
|
B(NM1) = (B(NM1) - D(NM1)*B(N))/C(NM1)
|
||
|
IF (NM2 .LT. 1) GO TO 70
|
||
|
DO 60 KB = 1, NM2
|
||
|
K = NM2 - KB + 1
|
||
|
B(K) = (B(K) - D(K)*B(K+1) - E(K)*B(K+2))/C(K)
|
||
|
60 CONTINUE
|
||
|
70 CONTINUE
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
100 CONTINUE
|
||
|
C
|
||
|
RETURN
|
||
|
END
|