mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
150 lines
4.2 KiB
FortranFixed
150 lines
4.2 KiB
FortranFixed
|
*DECK SNBSL
|
||
|
SUBROUTINE SNBSL (ABE, LDA, N, ML, MU, IPVT, B, JOB)
|
||
|
C***BEGIN PROLOGUE SNBSL
|
||
|
C***PURPOSE Solve a real band system using the factors computed by
|
||
|
C SNBCO or SNBFA.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY D2A2
|
||
|
C***TYPE SINGLE PRECISION (SNBSL-S, DNBSL-D, CNBSL-C)
|
||
|
C***KEYWORDS BANDED, LINEAR EQUATIONS, NONSYMMETRIC, SOLVE
|
||
|
C***AUTHOR Voorhees, E. A., (LANL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C SNBSL solves the real band system
|
||
|
C A * X = B or TRANS(A) * X = B
|
||
|
C using the factors computed by SNBCO or SNBFA.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C ABE REAL(LDA, NC)
|
||
|
C the output from SNBCO or SNBFA.
|
||
|
C NC must be .GE. 2*ML+MU+1 .
|
||
|
C
|
||
|
C LDA INTEGER
|
||
|
C the leading dimension of the array ABE .
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the original matrix.
|
||
|
C
|
||
|
C ML INTEGER
|
||
|
C number of diagonals below the main diagonal.
|
||
|
C
|
||
|
C MU INTEGER
|
||
|
C number of diagonals above the main diagonal.
|
||
|
C
|
||
|
C IPVT INTEGER(N)
|
||
|
C the pivot vector from SNBCO or SNBFA.
|
||
|
C
|
||
|
C B REAL(N)
|
||
|
C the right hand side vector.
|
||
|
C
|
||
|
C JOB INTEGER
|
||
|
C = 0 to solve A*X = B .
|
||
|
C = nonzero to solve TRANS(A)*X = B , where
|
||
|
C TRANS(A) is the transpose.
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C B the solution vector X .
|
||
|
C
|
||
|
C Error Condition
|
||
|
C
|
||
|
C A division by zero will occur if the input factor contains a
|
||
|
C zero on the diagonal. Technically, this indicates singularity,
|
||
|
C but it is often caused by improper arguments or improper
|
||
|
C setting of LDA. It will not occur if the subroutines are
|
||
|
C called correctly and if SNBCO has set RCOND .GT. 0.0
|
||
|
C or SNBFA has set INFO .EQ. 0 .
|
||
|
C
|
||
|
C To compute INVERSE(A) * C where C is a matrix
|
||
|
C with P columns
|
||
|
C CALL SNBCO(ABE,LDA,N,ML,MU,IPVT,RCOND,Z)
|
||
|
C IF (RCOND is too small) GO TO ...
|
||
|
C DO 10 J = 1, P
|
||
|
C CALL SNBSL(ABE,LDA,N,ML,MU,IPVT,C(1,J),0)
|
||
|
C 10 CONTINUE
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED SAXPY, SDOT
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800717 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE SNBSL
|
||
|
INTEGER LDA,N,ML,MU,IPVT(*),JOB
|
||
|
REAL ABE(LDA,*),B(*)
|
||
|
C
|
||
|
REAL SDOT,T
|
||
|
INTEGER K,KB,L,LB,LDB,LM,M,MLM,NM1
|
||
|
C***FIRST EXECUTABLE STATEMENT SNBSL
|
||
|
M=MU+ML+1
|
||
|
NM1=N-1
|
||
|
LDB=1-LDA
|
||
|
IF(JOB.NE.0)GO TO 50
|
||
|
C
|
||
|
C JOB = 0 , SOLVE A * X = B
|
||
|
C FIRST SOLVE L*Y = B
|
||
|
C
|
||
|
IF(ML.EQ.0)GO TO 30
|
||
|
IF(NM1.LT.1)GO TO 30
|
||
|
DO 20 K=1,NM1
|
||
|
LM=MIN(ML,N-K)
|
||
|
L=IPVT(K)
|
||
|
T=B(L)
|
||
|
IF(L.EQ.K)GO TO 10
|
||
|
B(L)=B(K)
|
||
|
B(K)=T
|
||
|
10 CONTINUE
|
||
|
MLM=ML-(LM-1)
|
||
|
CALL SAXPY(LM,T,ABE(K+LM,MLM),LDB,B(K+1),1)
|
||
|
20 CONTINUE
|
||
|
30 CONTINUE
|
||
|
C
|
||
|
C NOW SOLVE U*X = Y
|
||
|
C
|
||
|
DO 40 KB=1,N
|
||
|
K=N+1-KB
|
||
|
B(K)=B(K)/ABE(K,ML+1)
|
||
|
LM=MIN(K,M)-1
|
||
|
LB=K-LM
|
||
|
T=-B(K)
|
||
|
CALL SAXPY(LM,T,ABE(K-1,ML+2),LDB,B(LB),1)
|
||
|
40 CONTINUE
|
||
|
GO TO 100
|
||
|
50 CONTINUE
|
||
|
C
|
||
|
C JOB = NONZERO, SOLVE TRANS(A) * X = B
|
||
|
C FIRST SOLVE TRANS(U)*Y = B
|
||
|
C
|
||
|
DO 60 K = 1, N
|
||
|
LM = MIN(K,M) - 1
|
||
|
LB = K - LM
|
||
|
T = SDOT(LM,ABE(K-1,ML+2),LDB,B(LB),1)
|
||
|
B(K) = (B(K) - T)/ABE(K,ML+1)
|
||
|
60 CONTINUE
|
||
|
C
|
||
|
C NOW SOLVE TRANS(L)*X = Y
|
||
|
C
|
||
|
IF (ML .EQ. 0) GO TO 90
|
||
|
IF (NM1 .LT. 1) GO TO 90
|
||
|
DO 80 KB = 1, NM1
|
||
|
K = N - KB
|
||
|
LM = MIN(ML,N-K)
|
||
|
MLM = ML - (LM - 1)
|
||
|
B(K) = B(K) + SDOT(LM,ABE(K+LM,MLM),LDB,B(K+1),1)
|
||
|
L = IPVT(K)
|
||
|
IF (L .EQ. K) GO TO 70
|
||
|
T = B(L)
|
||
|
B(L) = B(K)
|
||
|
B(K) = T
|
||
|
70 CONTINUE
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
100 CONTINUE
|
||
|
RETURN
|
||
|
END
|