OpenLibm/slatec/soseqs.f

413 lines
12 KiB
FortranFixed
Raw Normal View History

*DECK SOSEQS
SUBROUTINE SOSEQS (FNC, N, S, RTOLX, ATOLX, TOLF, IFLAG, MXIT,
+ NCJS, NSRRC, NSRI, IPRINT, FMAX, C, NC, B, P, TEMP, X, Y, FAC,
+ IS)
C***BEGIN PROLOGUE SOSEQS
C***SUBSIDIARY
C***PURPOSE Subsidiary to SOS
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (SOSEQS-S, DSOSEQ-D)
C***AUTHOR (UNKNOWN)
C***DESCRIPTION
C
C SOSEQS solves a system of N simultaneous nonlinear equations.
C See the comments in the interfacing routine SOS for a more
C detailed description of some of the items in the calling list.
C
C ********************************************************************
C
C -INPUT-
C FNC -Function subprogram which evaluates the equations
C N -Number of equations
C S -Solution vector of initial guesses
C RTOLX-Relative error tolerance on solution components
C ATOLX-Absolute error tolerance on solution components
C TOLF-Residual error tolerance
C MXIT-Maximum number of allowable iterations.
C NCJS-Maximum number of consecutive iterative steps to perform
C using the same triangular Jacobian matrix approximation.
C NSRRC-Number of consecutive iterative steps for which the
C limiting precision accuracy test must be satisfied
C before the routine exits with IFLAG=4.
C NSRI-Number of consecutive iterative steps for which the
C diverging condition test must be satisfied before
C the routine exits with IFLAG=7.
C IPRINT-Internal printing parameter. You must set IPRINT=-1 if you
C want the intermediate solution iterates and a residual norm
C to be printed.
C C -Internal work array, dimensioned at least N*(N+1)/2.
C NC -Dimension of C array. NC .GE. N*(N+1)/2.
C B -Internal work array, dimensioned N.
C P -Internal work array, dimensioned N.
C TEMP-Internal work array, dimensioned N.
C X -Internal work array, dimensioned N.
C Y -Internal work array, dimensioned N.
C FAC -Internal work array, dimensioned N.
C IS -Internal work array, dimensioned N.
C
C -OUTPUT-
C S -Solution vector
C IFLAG-Status indicator flag
C MXIT-The actual number of iterations performed
C FMAX-Residual norm
C C -Upper unit triangular matrix which approximates the
C forward triangularization of the full Jacobian matrix.
C stored in a vector with dimension at least N*(N+1)/2.
C B -Contains the residuals (function values) divided
C by the corresponding components of the P vector
C P -Array used to store the partial derivatives. After
C each iteration P(K) contains the maximal derivative
C occurring in the K-th reduced equation.
C TEMP-Array used to store the previous solution iterate.
C X -Solution vector. Contains the values achieved on the
C last iteration loop upon exit from SOS.
C Y -Array containing the solution increments.
C FAC -Array containing factors used in computing numerical
C derivatives.
C IS -Records the pivotal information (column interchanges)
C
C **********************************************************************
C *** Three machine dependent parameters appear in this subroutine.
C
C *** The smallest positive magnitude, zero, is defined by the function
C *** routine R1MACH(1).
C
C *** URO, The computer unit roundoff value, is defined by R1MACH(3) for
C *** machines that round or R1MACH(4) for machines that truncate.
C *** URO is the smallest positive number such that 1.+URO .GT. 1.
C
C *** The output tape unit number, LOUN, is defined by the function
C *** I1MACH(2).
C **********************************************************************
C
C***SEE ALSO SOS
C***ROUTINES CALLED I1MACH, R1MACH, SOSSOL
C***REVISION HISTORY (YYMMDD)
C 801001 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C***END PROLOGUE SOSEQS
C
C
DIMENSION S(*), C(NC), B(*), IS(*), P(*), TEMP(*), X(*), Y(*),
1 FAC(*)
C
C***FIRST EXECUTABLE STATEMENT SOSEQS
URO = R1MACH(4)
LOUN = I1MACH(2)
ZERO = R1MACH(1)
RE = MAX(RTOLX,URO)
SRURO = SQRT(URO)
C
IFLAG = 0
NP1 = N + 1
ICR = 0
IC = 0
ITRY = NCJS
YN1 = 0.
YN2 = 0.
YN3 = 0.
YNS = 0.
MIT = 0
FN1 = 0.
FN2 = 0.
FMXS = 0.
C
C INITIALIZE THE INTERCHANGE (PIVOTING) VECTOR AND
C SAVE THE CURRENT SOLUTION APPROXIMATION FOR FUTURE USE.
C
DO 10 K=1,N
IS(K) = K
X(K) = S(K)
TEMP(K) = X(K)
10 CONTINUE
C
C
C *****************************************
C **** BEGIN PRINCIPAL ITERATION LOOP ****
C *****************************************
C
DO 330 M=1,MXIT
C
DO 20 K=1,N
FAC(K) = SRURO
20 CONTINUE
C
30 KN = 1
FMAX = 0.
C
C
C ******** BEGIN SUBITERATION LOOP DEFINING THE LINEARIZATION OF EACH
C ******** EQUATION WHICH RESULTS IN THE CONSTRUCTION OF AN UPPER
C ******** TRIANGULAR MATRIX APPROXIMATING THE FORWARD
C ******** TRIANGULARIZATION OF THE FULL JACOBIAN MATRIX
C
DO 170 K=1,N
KM1 = K - 1
C
C BACK-SOLVE A TRIANGULAR LINEAR SYSTEM OBTAINING
C IMPROVED SOLUTION VALUES FOR K-1 OF THE VARIABLES
C FROM THE FIRST K-1 EQUATIONS. THESE VARIABLES ARE THEN
C ELIMINATED FROM THE K-TH EQUATION.
C
IF (KM1 .EQ. 0) GO TO 50
CALL SOSSOL(K, N, KM1, Y, C, B, KN)
DO 40 J=1,KM1
JS = IS(J)
X(JS) = TEMP(JS) + Y(J)
40 CONTINUE
C
C
C EVALUATE THE K-TH EQUATION AND THE INTERMEDIATE COMPUTATION
C FOR THE MAX NORM OF THE RESIDUAL VECTOR.
C
50 F = FNC(X,K)
FMAX = MAX(FMAX,ABS(F))
C
C IF WE WISH TO PERFORM SEVERAL ITERATIONS USING A FIXED
C FACTORIZATION OF AN APPROXIMATE JACOBIAN,WE NEED ONLY
C UPDATE THE CONSTANT VECTOR.
C
IF (ITRY .LT. NCJS) GO TO 160
C
C
IT = 0
C
C COMPUTE PARTIAL DERIVATIVES THAT ARE REQUIRED IN THE LINEARIZATION
C OF THE K-TH REDUCED EQUATION
C
DO 90 J=K,N
ITEM = IS(J)
HX = X(ITEM)
H = FAC(ITEM)*HX
IF (ABS(H) .LE. ZERO) H = FAC(ITEM)
X(ITEM) = HX + H
IF (KM1 .EQ. 0) GO TO 70
Y(J) = H
CALL SOSSOL(K, N, J, Y, C, B, KN)
DO 60 L=1,KM1
LS = IS(L)
X(LS) = TEMP(LS) + Y(L)
60 CONTINUE
70 FP = FNC(X,K)
X(ITEM) = HX
FDIF = FP - F
IF (ABS(FDIF) .GT. URO*ABS(F)) GO TO 80
FDIF = 0.
IT = IT + 1
80 P(J) = FDIF/H
90 CONTINUE
C
IF (IT .LE. (N-K)) GO TO 110
C
C ALL COMPUTED PARTIAL DERIVATIVES OF THE K-TH EQUATION
C ARE EFFECTIVELY ZERO.TRY LARGER PERTURBATIONS OF THE
C INDEPENDENT VARIABLES.
C
DO 100 J=K,N
ISJ = IS(J)
FACT = 100.*FAC(ISJ)
IF (FACT .GT. 1.E+10) GO TO 340
FAC(ISJ) = FACT
100 CONTINUE
GO TO 30
C
110 IF (K .EQ. N) GO TO 160
C
C ACHIEVE A PIVOTING EFFECT BY CHOOSING THE MAXIMAL DERIVATIVE
C ELEMENT
C
PMAX = 0.
DO 120 J=K,N
TEST = ABS(P(J))
IF (TEST .LE. PMAX) GO TO 120
PMAX = TEST
ISV = J
120 CONTINUE
IF (PMAX .EQ. 0.) GO TO 340
C
C SET UP THE COEFFICIENTS FOR THE K-TH ROW OF THE TRIANGULAR
C LINEAR SYSTEM AND SAVE THE PARTIAL DERIVATIVE OF
C LARGEST MAGNITUDE
C
PMAX = P(ISV)
KK = KN
DO 140 J=K,N
IF (J .EQ. ISV) GO TO 130
C(KK) = -P(J)/PMAX
130 KK = KK + 1
140 CONTINUE
P(K) = PMAX
C
C
IF (ISV .EQ. K) GO TO 160
C
C INTERCHANGE THE TWO COLUMNS OF C DETERMINED BY THE
C PIVOTAL STRATEGY
C
KSV = IS(K)
IS(K) = IS(ISV)
IS(ISV) = KSV
C
KD = ISV - K
KJ = K
DO 150 J=1,K
CSV = C(KJ)
JK = KJ + KD
C(KJ) = C(JK)
C(JK) = CSV
KJ = KJ + N - J
150 CONTINUE
C
160 KN = KN + NP1 - K
C
C STORE THE COMPONENTS FOR THE CONSTANT VECTOR
C
B(K) = -F/P(K)
C
170 CONTINUE
C
C ********
C ******** END OF LOOP CREATING THE TRIANGULAR LINEARIZATION MATRIX
C ********
C
C
C SOLVE THE RESULTING TRIANGULAR SYSTEM FOR A NEW SOLUTION
C APPROXIMATION AND OBTAIN THE SOLUTION INCREMENT NORM.
C
KN = KN - 1
Y(N) = B(N)
IF (N .GT. 1) CALL SOSSOL(N, N, N, Y, C, B, KN)
XNORM = 0.
YNORM = 0.
DO 180 J=1,N
YJ = Y(J)
YNORM = MAX(YNORM,ABS(YJ))
JS = IS(J)
X(JS) = TEMP(JS) + YJ
XNORM = MAX(XNORM,ABS(X(JS)))
180 CONTINUE
C
C
C PRINT INTERMEDIATE SOLUTION ITERATES AND RESIDUAL NORM IF DESIRED
C
IF (IPRINT.NE.(-1)) GO TO 190
MM = M - 1
WRITE (LOUN,1234) FMAX, MM, (X(J),J=1,N)
1234 FORMAT ('0RESIDUAL NORM =', E9.2, /1X, 'SOLUTION ITERATE',
1 ' (', I3, ')', /(1X, 5E26.14))
190 CONTINUE
C
C TEST FOR CONVERGENCE TO A SOLUTION (RELATIVE AND/OR ABSOLUTE ERROR
C COMPARISON ON SUCCESSIVE APPROXIMATIONS OF EACH SOLUTION VARIABLE)
C
DO 200 J=1,N
JS = IS(J)
IF (ABS(Y(J)) .GT. RE*ABS(X(JS))+ATOLX) GO TO 210
200 CONTINUE
IF (FMAX .LE. FMXS) IFLAG = 1
C
C TEST FOR CONVERGENCE TO A SOLUTION BASED ON RESIDUALS
C
210 IF (FMAX .GT. TOLF) GO TO 220
IFLAG = IFLAG + 2
220 IF (IFLAG .GT. 0) GO TO 360
C
C
IF (M .GT. 1) GO TO 230
FMIN = FMAX
GO TO 280
C
C SAVE SOLUTION HAVING MINIMUM RESIDUAL NORM.
C
230 IF (FMAX .GE. FMIN) GO TO 250
MIT = M + 1
YN1 = YNORM
YN2 = YNS
FN1 = FMXS
FMIN = FMAX
DO 240 J=1,N
S(J) = X(J)
240 CONTINUE
IC = 0
C
C TEST FOR LIMITING PRECISION CONVERGENCE. VERY SLOWLY CONVERGENT
C PROBLEMS MAY ALSO BE DETECTED.
C
250 IF (YNORM .GT. SRURO*XNORM) GO TO 260
IF ((FMAX .LT. 0.2*FMXS) .OR. (FMAX .GT. 5.*FMXS)) GO TO 260
IF ((YNORM .LT. 0.2*YNS) .OR. (YNORM .GT. 5.*YNS)) GO TO 260
ICR = ICR + 1
IF (ICR .LT. NSRRC) GO TO 270
IFLAG = 4
FMAX = FMIN
GO TO 380
260 ICR = 0
C
C TEST FOR DIVERGENCE OF THE ITERATIVE SCHEME.
C
IF ((YNORM .LE. 2.*YNS) .AND. (FMAX .LE. 2.*FMXS)) GO TO 270
IC = IC + 1
IF (IC .LT. NSRI) GO TO 280
IFLAG = 7
GO TO 360
270 IC = 0
C
C CHECK TO SEE IF NEXT ITERATION CAN USE THE OLD JACOBIAN
C FACTORIZATION
C
280 ITRY = ITRY - 1
IF (ITRY .EQ. 0) GO TO 290
IF (20.*YNORM .GT. XNORM) GO TO 290
IF (YNORM .GT. 2.*YNS) GO TO 290
IF (FMAX .LT. 2.*FMXS) GO TO 300
290 ITRY = NCJS
C
C SAVE THE CURRENT SOLUTION APPROXIMATION AND THE RESIDUAL AND
C SOLUTION INCREMENT NORMS FOR USE IN THE NEXT ITERATION.
C
300 DO 310 J=1,N
TEMP(J) = X(J)
310 CONTINUE
IF (M.NE.MIT) GO TO 320
FN2 = FMAX
YN3 = YNORM
320 FMXS = FMAX
YNS = YNORM
C
C
330 CONTINUE
C
C *****************************************
C **** END OF PRINCIPAL ITERATION LOOP ****
C *****************************************
C
C
C TOO MANY ITERATIONS, CONVERGENCE WAS NOT ACHIEVED.
M = MXIT
IFLAG = 5
IF (YN1 .GT. 10.0*YN2 .OR. YN3 .GT. 10.0*YN1) IFLAG = 6
IF (FN1 .GT. 5.0*FMIN .OR. FN2 .GT. 5.0*FMIN) IFLAG = 6
IF (FMAX .GT. 5.0*FMIN) IFLAG = 6
GO TO 360
C
C
C A JACOBIAN-RELATED MATRIX IS EFFECTIVELY SINGULAR.
340 IFLAG = 8
DO 350 J=1,N
S(J) = TEMP(J)
350 CONTINUE
GO TO 380
C
C
360 DO 370 J=1,N
S(J) = X(J)
370 CONTINUE
C
C
380 MXIT = M
RETURN
END