mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
149 lines
4.8 KiB
FortranFixed
149 lines
4.8 KiB
FortranFixed
|
*DECK SROTM
|
||
|
SUBROUTINE SROTM (N, SX, INCX, SY, INCY, SPARAM)
|
||
|
C***BEGIN PROLOGUE SROTM
|
||
|
C***PURPOSE Apply a modified Givens transformation.
|
||
|
C***LIBRARY SLATEC (BLAS)
|
||
|
C***CATEGORY D1A8
|
||
|
C***TYPE SINGLE PRECISION (SROTM-S, DROTM-D)
|
||
|
C***KEYWORDS BLAS, LINEAR ALGEBRA, MODIFIED GIVENS ROTATION, VECTOR
|
||
|
C***AUTHOR Lawson, C. L., (JPL)
|
||
|
C Hanson, R. J., (SNLA)
|
||
|
C Kincaid, D. R., (U. of Texas)
|
||
|
C Krogh, F. T., (JPL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C B L A S Subprogram
|
||
|
C Description of Parameters
|
||
|
C
|
||
|
C --Input--
|
||
|
C N number of elements in input vector(s)
|
||
|
C SX single precision vector with N elements
|
||
|
C INCX storage spacing between elements of SX
|
||
|
C SY single precision vector with N elements
|
||
|
C INCY storage spacing between elements of SY
|
||
|
C SPARAM 5-element vector. SPARAM(1) is SFLAG described below.
|
||
|
C Locations 2-5 of SPARAM contain elements of the
|
||
|
C transformation matrix H described below.
|
||
|
C
|
||
|
C --Output--
|
||
|
C SX rotated vector (unchanged if N .LE. 0)
|
||
|
C SY rotated vector (unchanged if N .LE. 0)
|
||
|
C
|
||
|
C Apply the modified Givens transformation, H, to the 2 by N matrix
|
||
|
C (SX**T)
|
||
|
C (SY**T) , where **T indicates transpose. The elements of SX are
|
||
|
C in SX(LX+I*INCX), I = 0 to N-1, where LX = 1 if INCX .GE. 0, else
|
||
|
C LX = 1+(1-N)*INCX, and similarly for SY using LY and INCY.
|
||
|
C
|
||
|
C With SPARAM(1)=SFLAG, H has one of the following forms:
|
||
|
C
|
||
|
C SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0
|
||
|
C
|
||
|
C (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0)
|
||
|
C H=( ) ( ) ( ) ( )
|
||
|
C (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0).
|
||
|
C
|
||
|
C See SROTMG for a description of data storage in SPARAM.
|
||
|
C
|
||
|
C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
|
||
|
C Krogh, Basic linear algebra subprograms for Fortran
|
||
|
C usage, Algorithm No. 539, Transactions on Mathematical
|
||
|
C Software 5, 3 (September 1979), pp. 308-323.
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 791001 DATE WRITTEN
|
||
|
C 861211 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920310 Corrected definition of LX in DESCRIPTION. (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE SROTM
|
||
|
DIMENSION SX(*), SY(*), SPARAM(5)
|
||
|
SAVE ZERO, TWO
|
||
|
DATA ZERO, TWO /0.0E0, 2.0E0/
|
||
|
C***FIRST EXECUTABLE STATEMENT SROTM
|
||
|
SFLAG=SPARAM(1)
|
||
|
IF (N.LE.0 .OR. (SFLAG+TWO.EQ.ZERO)) GO TO 140
|
||
|
IF (.NOT.(INCX.EQ.INCY.AND. INCX .GT.0)) GO TO 70
|
||
|
C
|
||
|
NSTEPS=N*INCX
|
||
|
IF (SFLAG) 50,10,30
|
||
|
10 CONTINUE
|
||
|
SH12=SPARAM(4)
|
||
|
SH21=SPARAM(3)
|
||
|
DO 20 I = 1,NSTEPS,INCX
|
||
|
W=SX(I)
|
||
|
Z=SY(I)
|
||
|
SX(I)=W+Z*SH12
|
||
|
SY(I)=W*SH21+Z
|
||
|
20 CONTINUE
|
||
|
GO TO 140
|
||
|
30 CONTINUE
|
||
|
SH11=SPARAM(2)
|
||
|
SH22=SPARAM(5)
|
||
|
DO 40 I = 1,NSTEPS,INCX
|
||
|
W=SX(I)
|
||
|
Z=SY(I)
|
||
|
SX(I)=W*SH11+Z
|
||
|
SY(I)=-W+SH22*Z
|
||
|
40 CONTINUE
|
||
|
GO TO 140
|
||
|
50 CONTINUE
|
||
|
SH11=SPARAM(2)
|
||
|
SH12=SPARAM(4)
|
||
|
SH21=SPARAM(3)
|
||
|
SH22=SPARAM(5)
|
||
|
DO 60 I = 1,NSTEPS,INCX
|
||
|
W=SX(I)
|
||
|
Z=SY(I)
|
||
|
SX(I)=W*SH11+Z*SH12
|
||
|
SY(I)=W*SH21+Z*SH22
|
||
|
60 CONTINUE
|
||
|
GO TO 140
|
||
|
70 CONTINUE
|
||
|
KX=1
|
||
|
KY=1
|
||
|
IF (INCX .LT. 0) KX = 1+(1-N)*INCX
|
||
|
IF (INCY .LT. 0) KY = 1+(1-N)*INCY
|
||
|
C
|
||
|
IF (SFLAG) 120,80,100
|
||
|
80 CONTINUE
|
||
|
SH12=SPARAM(4)
|
||
|
SH21=SPARAM(3)
|
||
|
DO 90 I = 1,N
|
||
|
W=SX(KX)
|
||
|
Z=SY(KY)
|
||
|
SX(KX)=W+Z*SH12
|
||
|
SY(KY)=W*SH21+Z
|
||
|
KX=KX+INCX
|
||
|
KY=KY+INCY
|
||
|
90 CONTINUE
|
||
|
GO TO 140
|
||
|
100 CONTINUE
|
||
|
SH11=SPARAM(2)
|
||
|
SH22=SPARAM(5)
|
||
|
DO 110 I = 1,N
|
||
|
W=SX(KX)
|
||
|
Z=SY(KY)
|
||
|
SX(KX)=W*SH11+Z
|
||
|
SY(KY)=-W+SH22*Z
|
||
|
KX=KX+INCX
|
||
|
KY=KY+INCY
|
||
|
110 CONTINUE
|
||
|
GO TO 140
|
||
|
120 CONTINUE
|
||
|
SH11=SPARAM(2)
|
||
|
SH12=SPARAM(4)
|
||
|
SH21=SPARAM(3)
|
||
|
SH22=SPARAM(5)
|
||
|
DO 130 I = 1,N
|
||
|
W=SX(KX)
|
||
|
Z=SY(KY)
|
||
|
SX(KX)=W*SH11+Z*SH12
|
||
|
SY(KY)=W*SH21+Z*SH22
|
||
|
KX=KX+INCX
|
||
|
KY=KY+INCY
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
RETURN
|
||
|
END
|