mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
188 lines
4.8 KiB
FortranFixed
188 lines
4.8 KiB
FortranFixed
|
*DECK SSISL
|
||
|
SUBROUTINE SSISL (A, LDA, N, KPVT, B)
|
||
|
C***BEGIN PROLOGUE SSISL
|
||
|
C***PURPOSE Solve a real symmetric system using the factors obtained
|
||
|
C from SSIFA.
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2B1A
|
||
|
C***TYPE SINGLE PRECISION (SSISL-S, DSISL-D, CHISL-C, CSISL-C)
|
||
|
C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, SYMMETRIC
|
||
|
C***AUTHOR Bunch, J., (UCSD)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C SSISL solves the real symmetric system
|
||
|
C A * X = B
|
||
|
C using the factors computed by SSIFA.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C A REAL(LDA,N)
|
||
|
C the output from SSIFA.
|
||
|
C
|
||
|
C LDA INTEGER
|
||
|
C the leading dimension of the array A .
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the matrix A .
|
||
|
C
|
||
|
C KPVT INTEGER(N)
|
||
|
C the pivot vector from SSIFA.
|
||
|
C
|
||
|
C B REAL(N)
|
||
|
C the right hand side vector.
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C B the solution vector X .
|
||
|
C
|
||
|
C Error Condition
|
||
|
C
|
||
|
C A division by zero may occur if SSICO has set RCOND .EQ. 0.0
|
||
|
C or SSIFA has set INFO .NE. 0 .
|
||
|
C
|
||
|
C To compute INVERSE(A) * C where C is a matrix
|
||
|
C with P columns
|
||
|
C CALL SSIFA(A,LDA,N,KPVT,INFO)
|
||
|
C IF (INFO .NE. 0) GO TO ...
|
||
|
C DO 10 J = 1, P
|
||
|
C CALL SSISL(A,LDA,N,KPVT,C(1,J))
|
||
|
C 10 CONTINUE
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED SAXPY, SDOT
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 891107 Modified routine equivalence list. (WRB)
|
||
|
C 891107 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE SSISL
|
||
|
INTEGER LDA,N,KPVT(*)
|
||
|
REAL A(LDA,*),B(*)
|
||
|
C
|
||
|
REAL AK,AKM1,BK,BKM1,SDOT,DENOM,TEMP
|
||
|
INTEGER K,KP
|
||
|
C
|
||
|
C LOOP BACKWARD APPLYING THE TRANSFORMATIONS AND
|
||
|
C D INVERSE TO B.
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT SSISL
|
||
|
K = N
|
||
|
10 IF (K .EQ. 0) GO TO 80
|
||
|
IF (KPVT(K) .LT. 0) GO TO 40
|
||
|
C
|
||
|
C 1 X 1 PIVOT BLOCK.
|
||
|
C
|
||
|
IF (K .EQ. 1) GO TO 30
|
||
|
KP = KPVT(K)
|
||
|
IF (KP .EQ. K) GO TO 20
|
||
|
C
|
||
|
C INTERCHANGE.
|
||
|
C
|
||
|
TEMP = B(K)
|
||
|
B(K) = B(KP)
|
||
|
B(KP) = TEMP
|
||
|
20 CONTINUE
|
||
|
C
|
||
|
C APPLY THE TRANSFORMATION.
|
||
|
C
|
||
|
CALL SAXPY(K-1,B(K),A(1,K),1,B(1),1)
|
||
|
30 CONTINUE
|
||
|
C
|
||
|
C APPLY D INVERSE.
|
||
|
C
|
||
|
B(K) = B(K)/A(K,K)
|
||
|
K = K - 1
|
||
|
GO TO 70
|
||
|
40 CONTINUE
|
||
|
C
|
||
|
C 2 X 2 PIVOT BLOCK.
|
||
|
C
|
||
|
IF (K .EQ. 2) GO TO 60
|
||
|
KP = ABS(KPVT(K))
|
||
|
IF (KP .EQ. K - 1) GO TO 50
|
||
|
C
|
||
|
C INTERCHANGE.
|
||
|
C
|
||
|
TEMP = B(K-1)
|
||
|
B(K-1) = B(KP)
|
||
|
B(KP) = TEMP
|
||
|
50 CONTINUE
|
||
|
C
|
||
|
C APPLY THE TRANSFORMATION.
|
||
|
C
|
||
|
CALL SAXPY(K-2,B(K),A(1,K),1,B(1),1)
|
||
|
CALL SAXPY(K-2,B(K-1),A(1,K-1),1,B(1),1)
|
||
|
60 CONTINUE
|
||
|
C
|
||
|
C APPLY D INVERSE.
|
||
|
C
|
||
|
AK = A(K,K)/A(K-1,K)
|
||
|
AKM1 = A(K-1,K-1)/A(K-1,K)
|
||
|
BK = B(K)/A(K-1,K)
|
||
|
BKM1 = B(K-1)/A(K-1,K)
|
||
|
DENOM = AK*AKM1 - 1.0E0
|
||
|
B(K) = (AKM1*BK - BKM1)/DENOM
|
||
|
B(K-1) = (AK*BKM1 - BK)/DENOM
|
||
|
K = K - 2
|
||
|
70 CONTINUE
|
||
|
GO TO 10
|
||
|
80 CONTINUE
|
||
|
C
|
||
|
C LOOP FORWARD APPLYING THE TRANSFORMATIONS.
|
||
|
C
|
||
|
K = 1
|
||
|
90 IF (K .GT. N) GO TO 160
|
||
|
IF (KPVT(K) .LT. 0) GO TO 120
|
||
|
C
|
||
|
C 1 X 1 PIVOT BLOCK.
|
||
|
C
|
||
|
IF (K .EQ. 1) GO TO 110
|
||
|
C
|
||
|
C APPLY THE TRANSFORMATION.
|
||
|
C
|
||
|
B(K) = B(K) + SDOT(K-1,A(1,K),1,B(1),1)
|
||
|
KP = KPVT(K)
|
||
|
IF (KP .EQ. K) GO TO 100
|
||
|
C
|
||
|
C INTERCHANGE.
|
||
|
C
|
||
|
TEMP = B(K)
|
||
|
B(K) = B(KP)
|
||
|
B(KP) = TEMP
|
||
|
100 CONTINUE
|
||
|
110 CONTINUE
|
||
|
K = K + 1
|
||
|
GO TO 150
|
||
|
120 CONTINUE
|
||
|
C
|
||
|
C 2 X 2 PIVOT BLOCK.
|
||
|
C
|
||
|
IF (K .EQ. 1) GO TO 140
|
||
|
C
|
||
|
C APPLY THE TRANSFORMATION.
|
||
|
C
|
||
|
B(K) = B(K) + SDOT(K-1,A(1,K),1,B(1),1)
|
||
|
B(K+1) = B(K+1) + SDOT(K-1,A(1,K+1),1,B(1),1)
|
||
|
KP = ABS(KPVT(K))
|
||
|
IF (KP .EQ. K) GO TO 130
|
||
|
C
|
||
|
C INTERCHANGE.
|
||
|
C
|
||
|
TEMP = B(K)
|
||
|
B(K) = B(KP)
|
||
|
B(KP) = TEMP
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
K = K + 2
|
||
|
150 CONTINUE
|
||
|
GO TO 90
|
||
|
160 CONTINUE
|
||
|
RETURN
|
||
|
END
|