mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
479 lines
19 KiB
FortranFixed
479 lines
19 KiB
FortranFixed
|
*DECK STOD
|
||
|
SUBROUTINE STOD (NEQ, Y, YH, NYH, YH1, EWT, SAVF, ACOR, WM, IWM,
|
||
|
+ F, JAC, RPAR, IPAR)
|
||
|
C***BEGIN PROLOGUE STOD
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to DEBDF
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE SINGLE PRECISION (STOD-S, DSTOD-D)
|
||
|
C***AUTHOR Watts, H. A., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C STOD integrates a system of first order odes over one step in the
|
||
|
C integrator package DEBDF.
|
||
|
C ----------------------------------------------------------------------
|
||
|
C STOD performs one step of the integration of an initial value
|
||
|
C problem for a system of ordinary differential equations.
|
||
|
C Note.. STOD is independent of the value of the iteration method
|
||
|
C indicator MITER, when this is .NE. 0, and hence is independent
|
||
|
C of the type of chord method used, or the Jacobian structure.
|
||
|
C Communication with STOD is done with the following variables..
|
||
|
C
|
||
|
C Y = An array of length .GE. n used as the Y argument in
|
||
|
C all calls to F and JAC.
|
||
|
C NEQ = Integer array containing problem size in NEQ(1), and
|
||
|
C passed as the NEQ argument in all calls to F and JAC.
|
||
|
C YH = An NYH by LMAX array containing the dependent variables
|
||
|
C and their approximate scaled derivatives, where
|
||
|
C LMAX = MAXORD + 1. YH(I,J+1) contains the approximate
|
||
|
C J-th derivative of Y(I), scaled by H**J/Factorial(j)
|
||
|
C (J = 0,1,...,NQ). On entry for the first step, the first
|
||
|
C two columns of YH must be set from the initial values.
|
||
|
C NYH = A constant integer .GE. N, the first dimension of YH.
|
||
|
C YH1 = A one-dimensional array occupying the same space as YH.
|
||
|
C EWT = An array of N elements with which the estimated local
|
||
|
C errors in YH are compared.
|
||
|
C SAVF = An array of working storage, of length N.
|
||
|
C ACOR = A work array of length N, used for the accumulated
|
||
|
C corrections. On a successful return, ACOR(I) contains
|
||
|
C the estimated one-step local error in Y(I).
|
||
|
C WM,IWM = Real and integer work arrays associated with matrix
|
||
|
C operations in chord iteration (MITER .NE. 0).
|
||
|
C PJAC = Name of routine to evaluate and preprocess Jacobian matrix
|
||
|
C if a chord method is being used.
|
||
|
C SLVS = Name of routine to solve linear system in chord iteration.
|
||
|
C H = The step size to be attempted on the next step.
|
||
|
C H is altered by the error control algorithm during the
|
||
|
C problem. H can be either positive or negative, but its
|
||
|
C sign must remain constant throughout the problem.
|
||
|
C HMIN = The minimum absolute value of the step size H to be used.
|
||
|
C HMXI = Inverse of the maximum absolute value of H to be used.
|
||
|
C HMXI = 0.0 is allowed and corresponds to an infinite HMAX.
|
||
|
C HMIN and HMXI may be changed at any time, but will not
|
||
|
C take effect until the next change of H is considered.
|
||
|
C TN = The independent variable. TN is updated on each step taken.
|
||
|
C JSTART = An integer used for input only, with the following
|
||
|
C values and meanings..
|
||
|
C 0 Perform the first step.
|
||
|
C .GT.0 Take a new step continuing from the last.
|
||
|
C -1 Take the next step with a new value of H, MAXORD,
|
||
|
C N, METH, MITER, and/or matrix parameters.
|
||
|
C -2 Take the next step with a new value of H,
|
||
|
C but with other inputs unchanged.
|
||
|
C On return, JSTART is set to 1 to facilitate continuation.
|
||
|
C KFLAG = a completion code with the following meanings..
|
||
|
C 0 The step was successful.
|
||
|
C -1 The requested error could not be achieved.
|
||
|
C -2 Corrector convergence could not be achieved.
|
||
|
C A return with KFLAG = -1 or -2 means either
|
||
|
C ABS(H) = HMIN or 10 consecutive failures occurred.
|
||
|
C On a return with KFLAG negative, the values of TN and
|
||
|
C the YH array are as of the beginning of the last
|
||
|
C step, and H is the last step size attempted.
|
||
|
C MAXORD = The maximum order of integration method to be allowed.
|
||
|
C METH/MITER = The method flags. See description in driver.
|
||
|
C N = The number of first-order differential equations.
|
||
|
C ----------------------------------------------------------------------
|
||
|
C
|
||
|
C***SEE ALSO DEBDF
|
||
|
C***ROUTINES CALLED CFOD, PJAC, SLVS, VNWRMS
|
||
|
C***COMMON BLOCKS DEBDF1
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800901 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900328 Added TYPE section. (WRB)
|
||
|
C 910722 Updated AUTHOR section. (ALS)
|
||
|
C 920422 Changed DIMENSION statement. (WRB)
|
||
|
C***END PROLOGUE STOD
|
||
|
EXTERNAL F, JAC
|
||
|
C
|
||
|
CLLL. OPTIMIZE
|
||
|
INTEGER NEQ, NYH, IWM, I, I1, IALTH, IER, IOWND, IREDO, IRET,
|
||
|
1 IPUP, J, JB, JSTART, KFLAG, L, LMAX, M, MAXORD, MEO, METH,
|
||
|
2 MITER, N, NCF, NEWQ, NFE, NJE, NQ, NQNYH, NQU, NST, NSTEPJ
|
||
|
REAL Y, YH, YH1, EWT, SAVF, ACOR, WM,
|
||
|
1 ROWND, CONIT, CRATE, EL, ELCO, HOLD, RC, RMAX, TESCO,
|
||
|
2 EL0, H, HMIN, HMXI, HU, TN, UROUND,
|
||
|
3 DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, EXUP,
|
||
|
4 R, RH, RHDN, RHSM, RHUP, TOLD, VNWRMS
|
||
|
DIMENSION Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*),
|
||
|
1 ACOR(*), WM(*), IWM(*), RPAR(*), IPAR(*)
|
||
|
COMMON /DEBDF1/ ROWND, CONIT, CRATE, EL(13), ELCO(13,12),
|
||
|
1 HOLD, RC, RMAX, TESCO(3,12),
|
||
|
2 EL0, H, HMIN, HMXI, HU, TN, UROUND, IOWND(7), KSTEPS, IOD(6),
|
||
|
3 IALTH, IPUP, LMAX, MEO, NQNYH, NSTEPJ,
|
||
|
4 IER, JSTART, KFLAG, L, METH, MITER, MAXORD, N, NQ, NST, NFE,
|
||
|
5 NJE, NQU
|
||
|
C
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT STOD
|
||
|
KFLAG = 0
|
||
|
TOLD = TN
|
||
|
NCF = 0
|
||
|
IF (JSTART .GT. 0) GO TO 200
|
||
|
IF (JSTART .EQ. -1) GO TO 100
|
||
|
IF (JSTART .EQ. -2) GO TO 160
|
||
|
C-----------------------------------------------------------------------
|
||
|
C ON THE FIRST CALL, THE ORDER IS SET TO 1, AND OTHER VARIABLES ARE
|
||
|
C INITIALIZED. RMAX IS THE MAXIMUM RATIO BY WHICH H CAN BE INCREASED
|
||
|
C IN A SINGLE STEP. IT IS INITIALLY 1.E4 TO COMPENSATE FOR THE SMALL
|
||
|
C INITIAL H, BUT THEN IS NORMALLY EQUAL TO 10. IF A FAILURE
|
||
|
C OCCURS (IN CORRECTOR CONVERGENCE OR ERROR TEST), RMAX IS SET AT 2
|
||
|
C FOR THE NEXT INCREASE.
|
||
|
C-----------------------------------------------------------------------
|
||
|
LMAX = MAXORD + 1
|
||
|
NQ = 1
|
||
|
L = 2
|
||
|
IALTH = 2
|
||
|
RMAX = 10000.0E0
|
||
|
RC = 0.0E0
|
||
|
EL0 = 1.0E0
|
||
|
CRATE = 0.7E0
|
||
|
DELP = 0.0E0
|
||
|
HOLD = H
|
||
|
MEO = METH
|
||
|
NSTEPJ = 0
|
||
|
IRET = 3
|
||
|
GO TO 140
|
||
|
C-----------------------------------------------------------------------
|
||
|
C THE FOLLOWING BLOCK HANDLES PRELIMINARIES NEEDED WHEN JSTART = -1.
|
||
|
C IPUP IS SET TO MITER TO FORCE A MATRIX UPDATE.
|
||
|
C IF AN ORDER INCREASE IS ABOUT TO BE CONSIDERED (IALTH = 1),
|
||
|
C IALTH IS RESET TO 2 TO POSTPONE CONSIDERATION ONE MORE STEP.
|
||
|
C IF THE CALLER HAS CHANGED METH, CFOD IS CALLED TO RESET
|
||
|
C THE COEFFICIENTS OF THE METHOD.
|
||
|
C IF THE CALLER HAS CHANGED MAXORD TO A VALUE LESS THAN THE CURRENT
|
||
|
C ORDER NQ, NQ IS REDUCED TO MAXORD, AND A NEW H CHOSEN ACCORDINGLY.
|
||
|
C IF H IS TO BE CHANGED, YH MUST BE RESCALED.
|
||
|
C IF H OR METH IS BEING CHANGED, IALTH IS RESET TO L = NQ + 1
|
||
|
C TO PREVENT FURTHER CHANGES IN H FOR THAT MANY STEPS.
|
||
|
C-----------------------------------------------------------------------
|
||
|
100 IPUP = MITER
|
||
|
LMAX = MAXORD + 1
|
||
|
IF (IALTH .EQ. 1) IALTH = 2
|
||
|
IF (METH .EQ. MEO) GO TO 110
|
||
|
CALL CFOD (METH, ELCO, TESCO)
|
||
|
MEO = METH
|
||
|
IF (NQ .GT. MAXORD) GO TO 120
|
||
|
IALTH = L
|
||
|
IRET = 1
|
||
|
GO TO 150
|
||
|
110 IF (NQ .LE. MAXORD) GO TO 160
|
||
|
120 NQ = MAXORD
|
||
|
L = LMAX
|
||
|
DO 125 I = 1,L
|
||
|
125 EL(I) = ELCO(I,NQ)
|
||
|
NQNYH = NQ*NYH
|
||
|
RC = RC*EL(1)/EL0
|
||
|
EL0 = EL(1)
|
||
|
CONIT = 0.5E0/(NQ+2)
|
||
|
DDN = VNWRMS (N, SAVF, EWT)/TESCO(1,L)
|
||
|
EXDN = 1.0E0/L
|
||
|
RHDN = 1.0E0/(1.3E0*DDN**EXDN + 0.0000013E0)
|
||
|
RH = MIN(RHDN,1.0E0)
|
||
|
IREDO = 3
|
||
|
IF (H .EQ. HOLD) GO TO 170
|
||
|
RH = MIN(RH,ABS(H/HOLD))
|
||
|
H = HOLD
|
||
|
GO TO 175
|
||
|
C-----------------------------------------------------------------------
|
||
|
C CFOD IS CALLED TO GET ALL THE INTEGRATION COEFFICIENTS FOR THE
|
||
|
C CURRENT METH. THEN THE EL VECTOR AND RELATED CONSTANTS ARE RESET
|
||
|
C WHENEVER THE ORDER NQ IS CHANGED, OR AT THE START OF THE PROBLEM.
|
||
|
C-----------------------------------------------------------------------
|
||
|
140 CALL CFOD (METH, ELCO, TESCO)
|
||
|
150 DO 155 I = 1,L
|
||
|
155 EL(I) = ELCO(I,NQ)
|
||
|
NQNYH = NQ*NYH
|
||
|
RC = RC*EL(1)/EL0
|
||
|
EL0 = EL(1)
|
||
|
CONIT = 0.5E0/(NQ+2)
|
||
|
GO TO (160, 170, 200), IRET
|
||
|
C-----------------------------------------------------------------------
|
||
|
C IF H IS BEING CHANGED, THE H RATIO RH IS CHECKED AGAINST
|
||
|
C RMAX, HMIN, AND HMXI, AND THE YH ARRAY RESCALED. IALTH IS SET TO
|
||
|
C L = NQ + 1 TO PREVENT A CHANGE OF H FOR THAT MANY STEPS, UNLESS
|
||
|
C FORCED BY A CONVERGENCE OR ERROR TEST FAILURE.
|
||
|
C-----------------------------------------------------------------------
|
||
|
160 IF (H .EQ. HOLD) GO TO 200
|
||
|
RH = H/HOLD
|
||
|
H = HOLD
|
||
|
IREDO = 3
|
||
|
GO TO 175
|
||
|
170 RH = MAX(RH,HMIN/ABS(H))
|
||
|
175 RH = MIN(RH,RMAX)
|
||
|
RH = RH/MAX(1.0E0,ABS(H)*HMXI*RH)
|
||
|
R = 1.0E0
|
||
|
DO 180 J = 2,L
|
||
|
R = R*RH
|
||
|
DO 180 I = 1,N
|
||
|
180 YH(I,J) = YH(I,J)*R
|
||
|
H = H*RH
|
||
|
RC = RC*RH
|
||
|
IALTH = L
|
||
|
IF (IREDO .EQ. 0) GO TO 680
|
||
|
C-----------------------------------------------------------------------
|
||
|
C THIS SECTION COMPUTES THE PREDICTED VALUES BY EFFECTIVELY
|
||
|
C MULTIPLYING THE YH ARRAY BY THE PASCAL TRIANGLE MATRIX.
|
||
|
C RC IS THE RATIO OF NEW TO OLD VALUES OF THE COEFFICIENT H*EL(1).
|
||
|
C WHEN RC DIFFERS FROM 1 BY MORE THAN 30 PERCENT, IPUP IS SET TO MITER
|
||
|
C TO FORCE PJAC TO BE CALLED, IF A JACOBIAN IS INVOLVED.
|
||
|
C IN ANY CASE, PJAC IS CALLED AT LEAST EVERY 20-TH STEP.
|
||
|
C-----------------------------------------------------------------------
|
||
|
200 IF (ABS(RC-1.0E0) .GT. 0.3E0) IPUP = MITER
|
||
|
IF (NST .GE. NSTEPJ+20) IPUP = MITER
|
||
|
TN = TN + H
|
||
|
I1 = NQNYH + 1
|
||
|
DO 215 JB = 1,NQ
|
||
|
I1 = I1 - NYH
|
||
|
DO 210 I = I1,NQNYH
|
||
|
210 YH1(I) = YH1(I) + YH1(I+NYH)
|
||
|
215 CONTINUE
|
||
|
KSTEPS = KSTEPS + 1
|
||
|
C-----------------------------------------------------------------------
|
||
|
C UP TO 3 CORRECTOR ITERATIONS ARE TAKEN. A CONVERGENCE TEST IS
|
||
|
C MADE ON THE R.M.S. NORM OF EACH CORRECTION, WEIGHTED BY THE ERROR
|
||
|
C WEIGHT VECTOR EWT. THE SUM OF THE CORRECTIONS IS ACCUMULATED IN THE
|
||
|
C VECTOR ACOR(I). THE YH ARRAY IS NOT ALTERED IN THE CORRECTOR LOOP.
|
||
|
C-----------------------------------------------------------------------
|
||
|
220 M = 0
|
||
|
DO 230 I = 1,N
|
||
|
230 Y(I) = YH(I,1)
|
||
|
CALL F (TN, Y, SAVF, RPAR, IPAR)
|
||
|
NFE = NFE + 1
|
||
|
IF (IPUP .LE. 0) GO TO 250
|
||
|
C-----------------------------------------------------------------------
|
||
|
C IF INDICATED, THE MATRIX P = I - H*EL(1)*J IS REEVALUATED AND
|
||
|
C PREPROCESSED BEFORE STARTING THE CORRECTOR ITERATION. IPUP IS SET
|
||
|
C TO 0 AS AN INDICATOR THAT THIS HAS BEEN DONE.
|
||
|
C-----------------------------------------------------------------------
|
||
|
IPUP = 0
|
||
|
RC = 1.0E0
|
||
|
NSTEPJ = NST
|
||
|
CRATE = 0.7E0
|
||
|
CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVF, WM, IWM, F, JAC,
|
||
|
1 RPAR, IPAR)
|
||
|
IF (IER .NE. 0) GO TO 430
|
||
|
250 DO 260 I = 1,N
|
||
|
260 ACOR(I) = 0.0E0
|
||
|
270 IF (MITER .NE. 0) GO TO 350
|
||
|
C-----------------------------------------------------------------------
|
||
|
C IN THE CASE OF FUNCTIONAL ITERATION, UPDATE Y DIRECTLY FROM
|
||
|
C THE RESULT OF THE LAST FUNCTION EVALUATION.
|
||
|
C-----------------------------------------------------------------------
|
||
|
DO 290 I = 1,N
|
||
|
SAVF(I) = H*SAVF(I) - YH(I,2)
|
||
|
290 Y(I) = SAVF(I) - ACOR(I)
|
||
|
DEL = VNWRMS (N, Y, EWT)
|
||
|
DO 300 I = 1,N
|
||
|
Y(I) = YH(I,1) + EL(1)*SAVF(I)
|
||
|
300 ACOR(I) = SAVF(I)
|
||
|
GO TO 400
|
||
|
C-----------------------------------------------------------------------
|
||
|
C IN THE CASE OF THE CHORD METHOD, COMPUTE THE CORRECTOR ERROR,
|
||
|
C AND SOLVE THE LINEAR SYSTEM WITH THAT AS RIGHT-HAND SIDE AND
|
||
|
C P AS COEFFICIENT MATRIX.
|
||
|
C-----------------------------------------------------------------------
|
||
|
350 DO 360 I = 1,N
|
||
|
360 Y(I) = H*SAVF(I) - (YH(I,2) + ACOR(I))
|
||
|
CALL SLVS (WM, IWM, Y, SAVF)
|
||
|
IF (IER .NE. 0) GO TO 410
|
||
|
DEL = VNWRMS (N, Y, EWT)
|
||
|
DO 380 I = 1,N
|
||
|
ACOR(I) = ACOR(I) + Y(I)
|
||
|
380 Y(I) = YH(I,1) + EL(1)*ACOR(I)
|
||
|
C-----------------------------------------------------------------------
|
||
|
C TEST FOR CONVERGENCE. IF M.GT.0, AN ESTIMATE OF THE CONVERGENCE
|
||
|
C RATE CONSTANT IS STORED IN CRATE, AND THIS IS USED IN THE TEST.
|
||
|
C-----------------------------------------------------------------------
|
||
|
400 IF (M .NE. 0) CRATE = MAX(0.2E0*CRATE,DEL/DELP)
|
||
|
DCON = DEL*MIN(1.0E0,1.5E0*CRATE)/(TESCO(2,NQ)*CONIT)
|
||
|
IF (DCON .LE. 1.0E0) GO TO 450
|
||
|
M = M + 1
|
||
|
IF (M .EQ. 3) GO TO 410
|
||
|
IF (M .GE. 2 .AND. DEL .GT. 2.0E0*DELP) GO TO 410
|
||
|
DELP = DEL
|
||
|
CALL F (TN, Y, SAVF, RPAR, IPAR)
|
||
|
NFE = NFE + 1
|
||
|
GO TO 270
|
||
|
C-----------------------------------------------------------------------
|
||
|
C THE CORRECTOR ITERATION FAILED TO CONVERGE IN 3 TRIES.
|
||
|
C IF MITER .NE. 0 AND THE JACOBIAN IS OUT OF DATE, PJAC IS CALLED FOR
|
||
|
C THE NEXT TRY. OTHERWISE THE YH ARRAY IS RETRACTED TO ITS VALUES
|
||
|
C BEFORE PREDICTION, AND H IS REDUCED, IF POSSIBLE. IF H CANNOT BE
|
||
|
C REDUCED OR 10 FAILURES HAVE OCCURRED, EXIT WITH KFLAG = -2.
|
||
|
C-----------------------------------------------------------------------
|
||
|
410 IF (IPUP .EQ. 0) GO TO 430
|
||
|
IPUP = MITER
|
||
|
GO TO 220
|
||
|
430 TN = TOLD
|
||
|
NCF = NCF + 1
|
||
|
RMAX = 2.0E0
|
||
|
I1 = NQNYH + 1
|
||
|
DO 445 JB = 1,NQ
|
||
|
I1 = I1 - NYH
|
||
|
DO 440 I = I1,NQNYH
|
||
|
440 YH1(I) = YH1(I) - YH1(I+NYH)
|
||
|
445 CONTINUE
|
||
|
IF (ABS(H) .LE. HMIN*1.00001E0) GO TO 670
|
||
|
IF (NCF .EQ. 10) GO TO 670
|
||
|
RH = 0.25E0
|
||
|
IPUP = MITER
|
||
|
IREDO = 1
|
||
|
GO TO 170
|
||
|
C-----------------------------------------------------------------------
|
||
|
C THE CORRECTOR HAS CONVERGED. IPUP IS SET TO -1 IF MITER .NE. 0,
|
||
|
C TO SIGNAL THAT THE JACOBIAN INVOLVED MAY NEED UPDATING LATER.
|
||
|
C THE LOCAL ERROR TEST IS MADE AND CONTROL PASSES TO STATEMENT 500
|
||
|
C IF IT FAILS.
|
||
|
C-----------------------------------------------------------------------
|
||
|
450 IF (MITER .NE. 0) IPUP = -1
|
||
|
IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ)
|
||
|
IF (M .GT. 0) DSM = VNWRMS (N, ACOR, EWT)/TESCO(2,NQ)
|
||
|
IF (DSM .GT. 1.0E0) GO TO 500
|
||
|
C-----------------------------------------------------------------------
|
||
|
C AFTER A SUCCESSFUL STEP, UPDATE THE YH ARRAY.
|
||
|
C CONSIDER CHANGING H IF IALTH = 1. OTHERWISE DECREASE IALTH BY 1.
|
||
|
C IF IALTH IS THEN 1 AND NQ .LT. MAXORD, THEN ACOR IS SAVED FOR
|
||
|
C USE IN A POSSIBLE ORDER INCREASE ON THE NEXT STEP.
|
||
|
C IF A CHANGE IN H IS CONSIDERED, AN INCREASE OR DECREASE IN ORDER
|
||
|
C BY ONE IS CONSIDERED ALSO. A CHANGE IN H IS MADE ONLY IF IT IS BY A
|
||
|
C FACTOR OF AT LEAST 1.1. IF NOT, IALTH IS SET TO 3 TO PREVENT
|
||
|
C TESTING FOR THAT MANY STEPS.
|
||
|
C-----------------------------------------------------------------------
|
||
|
KFLAG = 0
|
||
|
IREDO = 0
|
||
|
NST = NST + 1
|
||
|
HU = H
|
||
|
NQU = NQ
|
||
|
DO 470 J = 1,L
|
||
|
DO 470 I = 1,N
|
||
|
470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I)
|
||
|
IALTH = IALTH - 1
|
||
|
IF (IALTH .EQ. 0) GO TO 520
|
||
|
IF (IALTH .GT. 1) GO TO 690
|
||
|
IF (L .EQ. LMAX) GO TO 690
|
||
|
DO 490 I = 1,N
|
||
|
490 YH(I,LMAX) = ACOR(I)
|
||
|
GO TO 690
|
||
|
C-----------------------------------------------------------------------
|
||
|
C THE ERROR TEST FAILED. KFLAG KEEPS TRACK OF MULTIPLE FAILURES.
|
||
|
C RESTORE TN AND THE YH ARRAY TO THEIR PREVIOUS VALUES, AND PREPARE
|
||
|
C TO TRY THE STEP AGAIN. COMPUTE THE OPTIMUM STEP SIZE FOR THIS OR
|
||
|
C ONE LOWER ORDER. AFTER 2 OR MORE FAILURES, H IS FORCED TO DECREASE
|
||
|
C BY A FACTOR OF 0.2 OR LESS.
|
||
|
C-----------------------------------------------------------------------
|
||
|
500 KFLAG = KFLAG - 1
|
||
|
TN = TOLD
|
||
|
I1 = NQNYH + 1
|
||
|
DO 515 JB = 1,NQ
|
||
|
I1 = I1 - NYH
|
||
|
DO 510 I = I1,NQNYH
|
||
|
510 YH1(I) = YH1(I) - YH1(I+NYH)
|
||
|
515 CONTINUE
|
||
|
RMAX = 2.0E0
|
||
|
IF (ABS(H) .LE. HMIN*1.00001E0) GO TO 660
|
||
|
IF (KFLAG .LE. -3) GO TO 640
|
||
|
IREDO = 2
|
||
|
RHUP = 0.0E0
|
||
|
GO TO 540
|
||
|
C-----------------------------------------------------------------------
|
||
|
C REGARDLESS OF THE SUCCESS OR FAILURE OF THE STEP, FACTORS
|
||
|
C RHDN, RHSM, AND RHUP ARE COMPUTED, BY WHICH H COULD BE MULTIPLIED
|
||
|
C AT ORDER NQ - 1, ORDER NQ, OR ORDER NQ + 1, RESPECTIVELY.
|
||
|
C IN THE CASE OF FAILURE, RHUP = 0.0 TO AVOID AN ORDER INCREASE.
|
||
|
C THE LARGEST OF THESE IS DETERMINED AND THE NEW ORDER CHOSEN
|
||
|
C ACCORDINGLY. IF THE ORDER IS TO BE INCREASED, WE COMPUTE ONE
|
||
|
C ADDITIONAL SCALED DERIVATIVE.
|
||
|
C-----------------------------------------------------------------------
|
||
|
520 RHUP = 0.0E0
|
||
|
IF (L .EQ. LMAX) GO TO 540
|
||
|
DO 530 I = 1,N
|
||
|
530 SAVF(I) = ACOR(I) - YH(I,LMAX)
|
||
|
DUP = VNWRMS (N, SAVF, EWT)/TESCO(3,NQ)
|
||
|
EXUP = 1.0E0/(L+1)
|
||
|
RHUP = 1.0E0/(1.4E0*DUP**EXUP + 0.0000014E0)
|
||
|
540 EXSM = 1.0E0/L
|
||
|
RHSM = 1.0E0/(1.2E0*DSM**EXSM + 0.0000012E0)
|
||
|
RHDN = 0.0E0
|
||
|
IF (NQ .EQ. 1) GO TO 560
|
||
|
DDN = VNWRMS (N, YH(1,L), EWT)/TESCO(1,NQ)
|
||
|
EXDN = 1.0E0/NQ
|
||
|
RHDN = 1.0E0/(1.3E0*DDN**EXDN + 0.0000013E0)
|
||
|
560 IF (RHSM .GE. RHUP) GO TO 570
|
||
|
IF (RHUP .GT. RHDN) GO TO 590
|
||
|
GO TO 580
|
||
|
570 IF (RHSM .LT. RHDN) GO TO 580
|
||
|
NEWQ = NQ
|
||
|
RH = RHSM
|
||
|
GO TO 620
|
||
|
580 NEWQ = NQ - 1
|
||
|
RH = RHDN
|
||
|
IF (KFLAG .LT. 0 .AND. RH .GT. 1.0E0) RH = 1.0E0
|
||
|
GO TO 620
|
||
|
590 NEWQ = L
|
||
|
RH = RHUP
|
||
|
IF (RH .LT. 1.1E0) GO TO 610
|
||
|
R = EL(L)/L
|
||
|
DO 600 I = 1,N
|
||
|
600 YH(I,NEWQ+1) = ACOR(I)*R
|
||
|
GO TO 630
|
||
|
610 IALTH = 3
|
||
|
GO TO 690
|
||
|
620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1E0)) GO TO 610
|
||
|
IF (KFLAG .LE. -2) RH = MIN(RH,0.2E0)
|
||
|
C-----------------------------------------------------------------------
|
||
|
C IF THERE IS A CHANGE OF ORDER, RESET NQ, L, AND THE COEFFICIENTS.
|
||
|
C IN ANY CASE H IS RESET ACCORDING TO RH AND THE YH ARRAY IS RESCALED.
|
||
|
C THEN EXIT FROM 680 IF THE STEP WAS OK, OR REDO THE STEP OTHERWISE.
|
||
|
C-----------------------------------------------------------------------
|
||
|
IF (NEWQ .EQ. NQ) GO TO 170
|
||
|
630 NQ = NEWQ
|
||
|
L = NQ + 1
|
||
|
IRET = 2
|
||
|
GO TO 150
|
||
|
C-----------------------------------------------------------------------
|
||
|
C CONTROL REACHES THIS SECTION IF 3 OR MORE FAILURES HAVE OCCURRED.
|
||
|
C IF 10 FAILURES HAVE OCCURRED, EXIT WITH KFLAG = -1.
|
||
|
C IT IS ASSUMED THAT THE DERIVATIVES THAT HAVE ACCUMULATED IN THE
|
||
|
C YH ARRAY HAVE ERRORS OF THE WRONG ORDER. HENCE THE FIRST
|
||
|
C DERIVATIVE IS RECOMPUTED, AND THE ORDER IS SET TO 1. THEN
|
||
|
C H IS REDUCED BY A FACTOR OF 10, AND THE STEP IS RETRIED,
|
||
|
C UNTIL IT SUCCEEDS OR H REACHES HMIN.
|
||
|
C-----------------------------------------------------------------------
|
||
|
640 IF (KFLAG .EQ. -10) GO TO 660
|
||
|
RH = 0.1E0
|
||
|
RH = MAX(HMIN/ABS(H),RH)
|
||
|
H = H*RH
|
||
|
DO 645 I = 1,N
|
||
|
645 Y(I) = YH(I,1)
|
||
|
CALL F (TN, Y, SAVF, RPAR, IPAR)
|
||
|
NFE = NFE + 1
|
||
|
DO 650 I = 1,N
|
||
|
650 YH(I,2) = H*SAVF(I)
|
||
|
IPUP = MITER
|
||
|
IALTH = 5
|
||
|
IF (NQ .EQ. 1) GO TO 200
|
||
|
NQ = 1
|
||
|
L = 2
|
||
|
IRET = 3
|
||
|
GO TO 150
|
||
|
C-----------------------------------------------------------------------
|
||
|
C ALL RETURNS ARE MADE THROUGH THIS SECTION. H IS SAVED IN HOLD
|
||
|
C TO ALLOW THE CALLER TO CHANGE H ON THE NEXT STEP.
|
||
|
C-----------------------------------------------------------------------
|
||
|
660 KFLAG = -1
|
||
|
GO TO 700
|
||
|
670 KFLAG = -2
|
||
|
GO TO 700
|
||
|
680 RMAX = 10.0E0
|
||
|
690 R = 1.0E0/TESCO(2,NQU)
|
||
|
DO 695 I = 1,N
|
||
|
695 ACOR(I) = ACOR(I)*R
|
||
|
700 HOLD = H
|
||
|
JSTART = 1
|
||
|
RETURN
|
||
|
C----------------------- END OF SUBROUTINE STOD -----------------------
|
||
|
END
|