mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
146 lines
4.8 KiB
FortranFixed
146 lines
4.8 KiB
FortranFixed
|
*DECK STRDI
|
||
|
SUBROUTINE STRDI (T, LDT, N, DET, JOB, INFO)
|
||
|
C***BEGIN PROLOGUE STRDI
|
||
|
C***PURPOSE Compute the determinant and inverse of a triangular matrix.
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2A3, D3A3
|
||
|
C***TYPE SINGLE PRECISION (STRDI-S, DTRDI-D, CTRDI-C)
|
||
|
C***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
|
||
|
C TRIANGULAR
|
||
|
C***AUTHOR Moler, C. B., (U. of New Mexico)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C STRDI computes the determinant and inverse of a real
|
||
|
C triangular matrix.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C T REAL(LDT,N)
|
||
|
C T contains the triangular matrix. The zero
|
||
|
C elements of the matrix are not referenced, and
|
||
|
C the corresponding elements of the array can be
|
||
|
C used to store other information.
|
||
|
C
|
||
|
C LDT INTEGER
|
||
|
C LDT is the leading dimension of the array T.
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C N is the order of the system.
|
||
|
C
|
||
|
C JOB INTEGER
|
||
|
C = 010 no det, inverse of lower triangular.
|
||
|
C = 011 no det, inverse of upper triangular.
|
||
|
C = 100 det, no inverse.
|
||
|
C = 110 det, inverse of lower triangular.
|
||
|
C = 111 det, inverse of upper triangular.
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C T inverse of original matrix if requested.
|
||
|
C Otherwise unchanged.
|
||
|
C
|
||
|
C DET REAL(2)
|
||
|
C determinant of original matrix if requested.
|
||
|
C Otherwise not referenced.
|
||
|
C Determinant = DET(1) * 10.0**DET(2)
|
||
|
C with 1.0 .LE. ABS(DET(1)) .LT. 10.0
|
||
|
C or DET(1) .EQ. 0.0 .
|
||
|
C
|
||
|
C INFO INTEGER
|
||
|
C INFO contains zero if the system is nonsingular
|
||
|
C and the inverse is requested.
|
||
|
C Otherwise INFO contains the index of
|
||
|
C a zero diagonal element of T.
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED SAXPY, SSCAL
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE STRDI
|
||
|
INTEGER LDT,N,JOB,INFO
|
||
|
REAL T(LDT,*),DET(2)
|
||
|
C
|
||
|
REAL TEMP
|
||
|
REAL TEN
|
||
|
INTEGER I,J,K,KB,KM1,KP1
|
||
|
C***FIRST EXECUTABLE STATEMENT STRDI
|
||
|
C
|
||
|
C COMPUTE DETERMINANT
|
||
|
C
|
||
|
IF (JOB/100 .EQ. 0) GO TO 70
|
||
|
DET(1) = 1.0E0
|
||
|
DET(2) = 0.0E0
|
||
|
TEN = 10.0E0
|
||
|
DO 50 I = 1, N
|
||
|
DET(1) = T(I,I)*DET(1)
|
||
|
IF (DET(1) .EQ. 0.0E0) GO TO 60
|
||
|
10 IF (ABS(DET(1)) .GE. 1.0E0) GO TO 20
|
||
|
DET(1) = TEN*DET(1)
|
||
|
DET(2) = DET(2) - 1.0E0
|
||
|
GO TO 10
|
||
|
20 CONTINUE
|
||
|
30 IF (ABS(DET(1)) .LT. TEN) GO TO 40
|
||
|
DET(1) = DET(1)/TEN
|
||
|
DET(2) = DET(2) + 1.0E0
|
||
|
GO TO 30
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
60 CONTINUE
|
||
|
70 CONTINUE
|
||
|
C
|
||
|
C COMPUTE INVERSE OF UPPER TRIANGULAR
|
||
|
C
|
||
|
IF (MOD(JOB/10,10) .EQ. 0) GO TO 170
|
||
|
IF (MOD(JOB,10) .EQ. 0) GO TO 120
|
||
|
DO 100 K = 1, N
|
||
|
INFO = K
|
||
|
IF (T(K,K) .EQ. 0.0E0) GO TO 110
|
||
|
T(K,K) = 1.0E0/T(K,K)
|
||
|
TEMP = -T(K,K)
|
||
|
CALL SSCAL(K-1,TEMP,T(1,K),1)
|
||
|
KP1 = K + 1
|
||
|
IF (N .LT. KP1) GO TO 90
|
||
|
DO 80 J = KP1, N
|
||
|
TEMP = T(K,J)
|
||
|
T(K,J) = 0.0E0
|
||
|
CALL SAXPY(K,TEMP,T(1,K),1,T(1,J),1)
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
100 CONTINUE
|
||
|
INFO = 0
|
||
|
110 CONTINUE
|
||
|
GO TO 160
|
||
|
120 CONTINUE
|
||
|
C
|
||
|
C COMPUTE INVERSE OF LOWER TRIANGULAR
|
||
|
C
|
||
|
DO 150 KB = 1, N
|
||
|
K = N + 1 - KB
|
||
|
INFO = K
|
||
|
IF (T(K,K) .EQ. 0.0E0) GO TO 180
|
||
|
T(K,K) = 1.0E0/T(K,K)
|
||
|
TEMP = -T(K,K)
|
||
|
IF (K .NE. N) CALL SSCAL(N-K,TEMP,T(K+1,K),1)
|
||
|
KM1 = K - 1
|
||
|
IF (KM1 .LT. 1) GO TO 140
|
||
|
DO 130 J = 1, KM1
|
||
|
TEMP = T(K,J)
|
||
|
T(K,J) = 0.0E0
|
||
|
CALL SAXPY(N-K+1,TEMP,T(K,K),1,T(K,J),1)
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
150 CONTINUE
|
||
|
INFO = 0
|
||
|
160 CONTINUE
|
||
|
170 CONTINUE
|
||
|
180 CONTINUE
|
||
|
RETURN
|
||
|
END
|