mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
281 lines
9.6 KiB
FortranFixed
281 lines
9.6 KiB
FortranFixed
|
*DECK TINVIT
|
||
|
SUBROUTINE TINVIT (NM, N, D, E, E2, M, W, IND, Z, IERR, RV1, RV2,
|
||
|
+ RV3, RV4, RV6)
|
||
|
C***BEGIN PROLOGUE TINVIT
|
||
|
C***PURPOSE Compute the eigenvectors of symmetric tridiagonal matrix
|
||
|
C corresponding to specified eigenvalues, using inverse
|
||
|
C iteration.
|
||
|
C***LIBRARY SLATEC (EISPACK)
|
||
|
C***CATEGORY D4C3
|
||
|
C***TYPE SINGLE PRECISION (TINVIT-S)
|
||
|
C***KEYWORDS EIGENVECTORS, EISPACK
|
||
|
C***AUTHOR Smith, B. T., et al.
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This subroutine is a translation of the inverse iteration tech-
|
||
|
C nique in the ALGOL procedure TRISTURM by Peters and Wilkinson.
|
||
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).
|
||
|
C
|
||
|
C This subroutine finds those eigenvectors of a TRIDIAGONAL
|
||
|
C SYMMETRIC matrix corresponding to specified eigenvalues,
|
||
|
C using inverse iteration.
|
||
|
C
|
||
|
C On Input
|
||
|
C
|
||
|
C NM must be set to the row dimension of the two-dimensional
|
||
|
C array parameter, Z, as declared in the calling program
|
||
|
C dimension statement. NM is an INTEGER variable.
|
||
|
C
|
||
|
C N is the order of the matrix. N is an INTEGER variable.
|
||
|
C N must be less than or equal to NM.
|
||
|
C
|
||
|
C D contains the diagonal elements of the symmetric tridiagonal
|
||
|
C matrix. D is a one-dimensional REAL array, dimensioned D(N).
|
||
|
C
|
||
|
C E contains the subdiagonal elements of the symmetric
|
||
|
C tridiagonal matrix in its last N-1 positions. E(1) is
|
||
|
C arbitrary. E is a one-dimensional REAL array, dimensioned
|
||
|
C E(N).
|
||
|
C
|
||
|
C E2 contains the squares of the corresponding elements of E,
|
||
|
C with zeros corresponding to negligible elements of E.
|
||
|
C E(I) is considered negligible if it is not larger than
|
||
|
C the product of the relative machine precision and the sum
|
||
|
C of the magnitudes of D(I) and D(I-1). E2(1) must contain
|
||
|
C 0.0e0 if the eigenvalues are in ascending order, or 2.0e0
|
||
|
C if the eigenvalues are in descending order. If BISECT,
|
||
|
C TRIDIB, or IMTQLV has been used to find the eigenvalues,
|
||
|
C their output E2 array is exactly what is expected here.
|
||
|
C E2 is a one-dimensional REAL array, dimensioned E2(N).
|
||
|
C
|
||
|
C M is the number of specified eigenvalues for which eigenvectors
|
||
|
C are to be determined. M is an INTEGER variable.
|
||
|
C
|
||
|
C W contains the M eigenvalues in ascending or descending order.
|
||
|
C W is a one-dimensional REAL array, dimensioned W(M).
|
||
|
C
|
||
|
C IND contains in its first M positions the submatrix indices
|
||
|
C associated with the corresponding eigenvalues in W --
|
||
|
C 1 for eigenvalues belonging to the first submatrix from
|
||
|
C the top, 2 for those belonging to the second submatrix, etc.
|
||
|
C If BISECT or TRIDIB has been used to determine the
|
||
|
C eigenvalues, their output IND array is suitable for input
|
||
|
C to TINVIT. IND is a one-dimensional INTEGER array,
|
||
|
C dimensioned IND(M).
|
||
|
C
|
||
|
C On Output
|
||
|
C
|
||
|
C ** All input arrays are unaltered.**
|
||
|
C
|
||
|
C Z contains the associated set of orthonormal eigenvectors.
|
||
|
C Any vector which fails to converge is set to zero.
|
||
|
C Z is a two-dimensional REAL array, dimensioned Z(NM,M).
|
||
|
C
|
||
|
C IERR is an INTEGER flag set to
|
||
|
C Zero for normal return,
|
||
|
C -J if the eigenvector corresponding to the J-th
|
||
|
C eigenvalue fails to converge in 5 iterations.
|
||
|
C
|
||
|
C RV1, RV2 and RV3 are one-dimensional REAL arrays used for
|
||
|
C temporary storage. They are used to store the main diagonal
|
||
|
C and the two adjacent diagonals of the triangular matrix
|
||
|
C produced in the inverse iteration process. RV1, RV2 and
|
||
|
C RV3 are dimensioned RV1(N), RV2(N) and RV3(N).
|
||
|
C
|
||
|
C RV4 and RV6 are one-dimensional REAL arrays used for temporary
|
||
|
C storage. RV4 holds the multipliers of the Gaussian
|
||
|
C elimination process. RV6 holds the approximate eigenvectors
|
||
|
C in this process. RV4 and RV6 are dimensioned RV4(N) and
|
||
|
C RV6(N).
|
||
|
C
|
||
|
C Questions and comments should be directed to B. S. Garbow,
|
||
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
||
|
C ------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
||
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
||
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
||
|
C 1976.
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 760101 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE TINVIT
|
||
|
C
|
||
|
INTEGER I,J,M,N,P,Q,R,S,II,IP,JJ,NM,ITS,TAG,IERR,GROUP
|
||
|
INTEGER IND(*)
|
||
|
REAL D(*),E(*),E2(*),W(*),Z(NM,*)
|
||
|
REAL RV1(*),RV2(*),RV3(*),RV4(*),RV6(*)
|
||
|
REAL U,V,UK,XU,X0,X1,EPS2,EPS3,EPS4,NORM,ORDER
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT TINVIT
|
||
|
IERR = 0
|
||
|
IF (M .EQ. 0) GO TO 1001
|
||
|
TAG = 0
|
||
|
ORDER = 1.0E0 - E2(1)
|
||
|
Q = 0
|
||
|
C .......... ESTABLISH AND PROCESS NEXT SUBMATRIX ..........
|
||
|
100 P = Q + 1
|
||
|
C
|
||
|
DO 120 Q = P, N
|
||
|
IF (Q .EQ. N) GO TO 140
|
||
|
IF (E2(Q+1) .EQ. 0.0E0) GO TO 140
|
||
|
120 CONTINUE
|
||
|
C .......... FIND VECTORS BY INVERSE ITERATION ..........
|
||
|
140 TAG = TAG + 1
|
||
|
S = 0
|
||
|
C
|
||
|
DO 920 R = 1, M
|
||
|
IF (IND(R) .NE. TAG) GO TO 920
|
||
|
ITS = 1
|
||
|
X1 = W(R)
|
||
|
IF (S .NE. 0) GO TO 510
|
||
|
C .......... CHECK FOR ISOLATED ROOT ..........
|
||
|
XU = 1.0E0
|
||
|
IF (P .NE. Q) GO TO 490
|
||
|
RV6(P) = 1.0E0
|
||
|
GO TO 870
|
||
|
490 NORM = ABS(D(P))
|
||
|
IP = P + 1
|
||
|
C
|
||
|
DO 500 I = IP, Q
|
||
|
500 NORM = MAX(NORM, ABS(D(I)) + ABS(E(I)))
|
||
|
C .......... EPS2 IS THE CRITERION FOR GROUPING,
|
||
|
C EPS3 REPLACES ZERO PIVOTS AND EQUAL
|
||
|
C ROOTS ARE MODIFIED BY EPS3,
|
||
|
C EPS4 IS TAKEN VERY SMALL TO AVOID OVERFLOW ..........
|
||
|
EPS2 = 1.0E-3 * NORM
|
||
|
EPS3 = NORM
|
||
|
502 EPS3 = 0.5E0*EPS3
|
||
|
IF (NORM + EPS3 .GT. NORM) GO TO 502
|
||
|
UK = SQRT(REAL(Q-P+5))
|
||
|
EPS3 = UK * EPS3
|
||
|
EPS4 = UK * EPS3
|
||
|
UK = EPS4 / UK
|
||
|
S = P
|
||
|
505 GROUP = 0
|
||
|
GO TO 520
|
||
|
C .......... LOOK FOR CLOSE OR COINCIDENT ROOTS ..........
|
||
|
510 IF (ABS(X1-X0) .GE. EPS2) GO TO 505
|
||
|
GROUP = GROUP + 1
|
||
|
IF (ORDER * (X1 - X0) .LE. 0.0E0) X1 = X0 + ORDER * EPS3
|
||
|
C .......... ELIMINATION WITH INTERCHANGES AND
|
||
|
C INITIALIZATION OF VECTOR ..........
|
||
|
520 V = 0.0E0
|
||
|
C
|
||
|
DO 580 I = P, Q
|
||
|
RV6(I) = UK
|
||
|
IF (I .EQ. P) GO TO 560
|
||
|
IF (ABS(E(I)) .LT. ABS(U)) GO TO 540
|
||
|
C .......... WARNING -- A DIVIDE CHECK MAY OCCUR HERE IF
|
||
|
C E2 ARRAY HAS NOT BEEN SPECIFIED CORRECTLY ..........
|
||
|
XU = U / E(I)
|
||
|
RV4(I) = XU
|
||
|
RV1(I-1) = E(I)
|
||
|
RV2(I-1) = D(I) - X1
|
||
|
RV3(I-1) = 0.0E0
|
||
|
IF (I .NE. Q) RV3(I-1) = E(I+1)
|
||
|
U = V - XU * RV2(I-1)
|
||
|
V = -XU * RV3(I-1)
|
||
|
GO TO 580
|
||
|
540 XU = E(I) / U
|
||
|
RV4(I) = XU
|
||
|
RV1(I-1) = U
|
||
|
RV2(I-1) = V
|
||
|
RV3(I-1) = 0.0E0
|
||
|
560 U = D(I) - X1 - XU * V
|
||
|
IF (I .NE. Q) V = E(I+1)
|
||
|
580 CONTINUE
|
||
|
C
|
||
|
IF (U .EQ. 0.0E0) U = EPS3
|
||
|
RV1(Q) = U
|
||
|
RV2(Q) = 0.0E0
|
||
|
RV3(Q) = 0.0E0
|
||
|
C .......... BACK SUBSTITUTION
|
||
|
C FOR I=Q STEP -1 UNTIL P DO -- ..........
|
||
|
600 DO 620 II = P, Q
|
||
|
I = P + Q - II
|
||
|
RV6(I) = (RV6(I) - U * RV2(I) - V * RV3(I)) / RV1(I)
|
||
|
V = U
|
||
|
U = RV6(I)
|
||
|
620 CONTINUE
|
||
|
C .......... ORTHOGONALIZE WITH RESPECT TO PREVIOUS
|
||
|
C MEMBERS OF GROUP ..........
|
||
|
IF (GROUP .EQ. 0) GO TO 700
|
||
|
J = R
|
||
|
C
|
||
|
DO 680 JJ = 1, GROUP
|
||
|
630 J = J - 1
|
||
|
IF (IND(J) .NE. TAG) GO TO 630
|
||
|
XU = 0.0E0
|
||
|
C
|
||
|
DO 640 I = P, Q
|
||
|
640 XU = XU + RV6(I) * Z(I,J)
|
||
|
C
|
||
|
DO 660 I = P, Q
|
||
|
660 RV6(I) = RV6(I) - XU * Z(I,J)
|
||
|
C
|
||
|
680 CONTINUE
|
||
|
C
|
||
|
700 NORM = 0.0E0
|
||
|
C
|
||
|
DO 720 I = P, Q
|
||
|
720 NORM = NORM + ABS(RV6(I))
|
||
|
C
|
||
|
IF (NORM .GE. 1.0E0) GO TO 840
|
||
|
C .......... FORWARD SUBSTITUTION ..........
|
||
|
IF (ITS .EQ. 5) GO TO 830
|
||
|
IF (NORM .NE. 0.0E0) GO TO 740
|
||
|
RV6(S) = EPS4
|
||
|
S = S + 1
|
||
|
IF (S .GT. Q) S = P
|
||
|
GO TO 780
|
||
|
740 XU = EPS4 / NORM
|
||
|
C
|
||
|
DO 760 I = P, Q
|
||
|
760 RV6(I) = RV6(I) * XU
|
||
|
C .......... ELIMINATION OPERATIONS ON NEXT VECTOR
|
||
|
C ITERATE ..........
|
||
|
780 DO 820 I = IP, Q
|
||
|
U = RV6(I)
|
||
|
C .......... IF RV1(I-1) .EQ. E(I), A ROW INTERCHANGE
|
||
|
C WAS PERFORMED EARLIER IN THE
|
||
|
C TRIANGULARIZATION PROCESS ..........
|
||
|
IF (RV1(I-1) .NE. E(I)) GO TO 800
|
||
|
U = RV6(I-1)
|
||
|
RV6(I-1) = RV6(I)
|
||
|
800 RV6(I) = U - RV4(I) * RV6(I-1)
|
||
|
820 CONTINUE
|
||
|
C
|
||
|
ITS = ITS + 1
|
||
|
GO TO 600
|
||
|
C .......... SET ERROR -- NON-CONVERGED EIGENVECTOR ..........
|
||
|
830 IERR = -R
|
||
|
XU = 0.0E0
|
||
|
GO TO 870
|
||
|
C .......... NORMALIZE SO THAT SUM OF SQUARES IS
|
||
|
C 1 AND EXPAND TO FULL ORDER ..........
|
||
|
840 U = 0.0E0
|
||
|
C
|
||
|
DO 860 I = P, Q
|
||
|
860 U = U + RV6(I)**2
|
||
|
C
|
||
|
XU = 1.0E0 / SQRT(U)
|
||
|
C
|
||
|
870 DO 880 I = 1, N
|
||
|
880 Z(I,R) = 0.0E0
|
||
|
C
|
||
|
DO 900 I = P, Q
|
||
|
900 Z(I,R) = RV6(I) * XU
|
||
|
C
|
||
|
X0 = X1
|
||
|
920 CONTINUE
|
||
|
C
|
||
|
IF (Q .LT. N) GO TO 100
|
||
|
1001 RETURN
|
||
|
END
|