OpenLibm/slatec/tinvit.f

281 lines
9.6 KiB
FortranFixed
Raw Normal View History

*DECK TINVIT
SUBROUTINE TINVIT (NM, N, D, E, E2, M, W, IND, Z, IERR, RV1, RV2,
+ RV3, RV4, RV6)
C***BEGIN PROLOGUE TINVIT
C***PURPOSE Compute the eigenvectors of symmetric tridiagonal matrix
C corresponding to specified eigenvalues, using inverse
C iteration.
C***LIBRARY SLATEC (EISPACK)
C***CATEGORY D4C3
C***TYPE SINGLE PRECISION (TINVIT-S)
C***KEYWORDS EIGENVECTORS, EISPACK
C***AUTHOR Smith, B. T., et al.
C***DESCRIPTION
C
C This subroutine is a translation of the inverse iteration tech-
C nique in the ALGOL procedure TRISTURM by Peters and Wilkinson.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).
C
C This subroutine finds those eigenvectors of a TRIDIAGONAL
C SYMMETRIC matrix corresponding to specified eigenvalues,
C using inverse iteration.
C
C On Input
C
C NM must be set to the row dimension of the two-dimensional
C array parameter, Z, as declared in the calling program
C dimension statement. NM is an INTEGER variable.
C
C N is the order of the matrix. N is an INTEGER variable.
C N must be less than or equal to NM.
C
C D contains the diagonal elements of the symmetric tridiagonal
C matrix. D is a one-dimensional REAL array, dimensioned D(N).
C
C E contains the subdiagonal elements of the symmetric
C tridiagonal matrix in its last N-1 positions. E(1) is
C arbitrary. E is a one-dimensional REAL array, dimensioned
C E(N).
C
C E2 contains the squares of the corresponding elements of E,
C with zeros corresponding to negligible elements of E.
C E(I) is considered negligible if it is not larger than
C the product of the relative machine precision and the sum
C of the magnitudes of D(I) and D(I-1). E2(1) must contain
C 0.0e0 if the eigenvalues are in ascending order, or 2.0e0
C if the eigenvalues are in descending order. If BISECT,
C TRIDIB, or IMTQLV has been used to find the eigenvalues,
C their output E2 array is exactly what is expected here.
C E2 is a one-dimensional REAL array, dimensioned E2(N).
C
C M is the number of specified eigenvalues for which eigenvectors
C are to be determined. M is an INTEGER variable.
C
C W contains the M eigenvalues in ascending or descending order.
C W is a one-dimensional REAL array, dimensioned W(M).
C
C IND contains in its first M positions the submatrix indices
C associated with the corresponding eigenvalues in W --
C 1 for eigenvalues belonging to the first submatrix from
C the top, 2 for those belonging to the second submatrix, etc.
C If BISECT or TRIDIB has been used to determine the
C eigenvalues, their output IND array is suitable for input
C to TINVIT. IND is a one-dimensional INTEGER array,
C dimensioned IND(M).
C
C On Output
C
C ** All input arrays are unaltered.**
C
C Z contains the associated set of orthonormal eigenvectors.
C Any vector which fails to converge is set to zero.
C Z is a two-dimensional REAL array, dimensioned Z(NM,M).
C
C IERR is an INTEGER flag set to
C Zero for normal return,
C -J if the eigenvector corresponding to the J-th
C eigenvalue fails to converge in 5 iterations.
C
C RV1, RV2 and RV3 are one-dimensional REAL arrays used for
C temporary storage. They are used to store the main diagonal
C and the two adjacent diagonals of the triangular matrix
C produced in the inverse iteration process. RV1, RV2 and
C RV3 are dimensioned RV1(N), RV2(N) and RV3(N).
C
C RV4 and RV6 are one-dimensional REAL arrays used for temporary
C storage. RV4 holds the multipliers of the Gaussian
C elimination process. RV6 holds the approximate eigenvectors
C in this process. RV4 and RV6 are dimensioned RV4(N) and
C RV6(N).
C
C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C ------------------------------------------------------------------
C
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C system Routines - EISPACK Guide, Springer-Verlag,
C 1976.
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 760101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE TINVIT
C
INTEGER I,J,M,N,P,Q,R,S,II,IP,JJ,NM,ITS,TAG,IERR,GROUP
INTEGER IND(*)
REAL D(*),E(*),E2(*),W(*),Z(NM,*)
REAL RV1(*),RV2(*),RV3(*),RV4(*),RV6(*)
REAL U,V,UK,XU,X0,X1,EPS2,EPS3,EPS4,NORM,ORDER
C
C***FIRST EXECUTABLE STATEMENT TINVIT
IERR = 0
IF (M .EQ. 0) GO TO 1001
TAG = 0
ORDER = 1.0E0 - E2(1)
Q = 0
C .......... ESTABLISH AND PROCESS NEXT SUBMATRIX ..........
100 P = Q + 1
C
DO 120 Q = P, N
IF (Q .EQ. N) GO TO 140
IF (E2(Q+1) .EQ. 0.0E0) GO TO 140
120 CONTINUE
C .......... FIND VECTORS BY INVERSE ITERATION ..........
140 TAG = TAG + 1
S = 0
C
DO 920 R = 1, M
IF (IND(R) .NE. TAG) GO TO 920
ITS = 1
X1 = W(R)
IF (S .NE. 0) GO TO 510
C .......... CHECK FOR ISOLATED ROOT ..........
XU = 1.0E0
IF (P .NE. Q) GO TO 490
RV6(P) = 1.0E0
GO TO 870
490 NORM = ABS(D(P))
IP = P + 1
C
DO 500 I = IP, Q
500 NORM = MAX(NORM, ABS(D(I)) + ABS(E(I)))
C .......... EPS2 IS THE CRITERION FOR GROUPING,
C EPS3 REPLACES ZERO PIVOTS AND EQUAL
C ROOTS ARE MODIFIED BY EPS3,
C EPS4 IS TAKEN VERY SMALL TO AVOID OVERFLOW ..........
EPS2 = 1.0E-3 * NORM
EPS3 = NORM
502 EPS3 = 0.5E0*EPS3
IF (NORM + EPS3 .GT. NORM) GO TO 502
UK = SQRT(REAL(Q-P+5))
EPS3 = UK * EPS3
EPS4 = UK * EPS3
UK = EPS4 / UK
S = P
505 GROUP = 0
GO TO 520
C .......... LOOK FOR CLOSE OR COINCIDENT ROOTS ..........
510 IF (ABS(X1-X0) .GE. EPS2) GO TO 505
GROUP = GROUP + 1
IF (ORDER * (X1 - X0) .LE. 0.0E0) X1 = X0 + ORDER * EPS3
C .......... ELIMINATION WITH INTERCHANGES AND
C INITIALIZATION OF VECTOR ..........
520 V = 0.0E0
C
DO 580 I = P, Q
RV6(I) = UK
IF (I .EQ. P) GO TO 560
IF (ABS(E(I)) .LT. ABS(U)) GO TO 540
C .......... WARNING -- A DIVIDE CHECK MAY OCCUR HERE IF
C E2 ARRAY HAS NOT BEEN SPECIFIED CORRECTLY ..........
XU = U / E(I)
RV4(I) = XU
RV1(I-1) = E(I)
RV2(I-1) = D(I) - X1
RV3(I-1) = 0.0E0
IF (I .NE. Q) RV3(I-1) = E(I+1)
U = V - XU * RV2(I-1)
V = -XU * RV3(I-1)
GO TO 580
540 XU = E(I) / U
RV4(I) = XU
RV1(I-1) = U
RV2(I-1) = V
RV3(I-1) = 0.0E0
560 U = D(I) - X1 - XU * V
IF (I .NE. Q) V = E(I+1)
580 CONTINUE
C
IF (U .EQ. 0.0E0) U = EPS3
RV1(Q) = U
RV2(Q) = 0.0E0
RV3(Q) = 0.0E0
C .......... BACK SUBSTITUTION
C FOR I=Q STEP -1 UNTIL P DO -- ..........
600 DO 620 II = P, Q
I = P + Q - II
RV6(I) = (RV6(I) - U * RV2(I) - V * RV3(I)) / RV1(I)
V = U
U = RV6(I)
620 CONTINUE
C .......... ORTHOGONALIZE WITH RESPECT TO PREVIOUS
C MEMBERS OF GROUP ..........
IF (GROUP .EQ. 0) GO TO 700
J = R
C
DO 680 JJ = 1, GROUP
630 J = J - 1
IF (IND(J) .NE. TAG) GO TO 630
XU = 0.0E0
C
DO 640 I = P, Q
640 XU = XU + RV6(I) * Z(I,J)
C
DO 660 I = P, Q
660 RV6(I) = RV6(I) - XU * Z(I,J)
C
680 CONTINUE
C
700 NORM = 0.0E0
C
DO 720 I = P, Q
720 NORM = NORM + ABS(RV6(I))
C
IF (NORM .GE. 1.0E0) GO TO 840
C .......... FORWARD SUBSTITUTION ..........
IF (ITS .EQ. 5) GO TO 830
IF (NORM .NE. 0.0E0) GO TO 740
RV6(S) = EPS4
S = S + 1
IF (S .GT. Q) S = P
GO TO 780
740 XU = EPS4 / NORM
C
DO 760 I = P, Q
760 RV6(I) = RV6(I) * XU
C .......... ELIMINATION OPERATIONS ON NEXT VECTOR
C ITERATE ..........
780 DO 820 I = IP, Q
U = RV6(I)
C .......... IF RV1(I-1) .EQ. E(I), A ROW INTERCHANGE
C WAS PERFORMED EARLIER IN THE
C TRIANGULARIZATION PROCESS ..........
IF (RV1(I-1) .NE. E(I)) GO TO 800
U = RV6(I-1)
RV6(I-1) = RV6(I)
800 RV6(I) = U - RV4(I) * RV6(I-1)
820 CONTINUE
C
ITS = ITS + 1
GO TO 600
C .......... SET ERROR -- NON-CONVERGED EIGENVECTOR ..........
830 IERR = -R
XU = 0.0E0
GO TO 870
C .......... NORMALIZE SO THAT SUM OF SQUARES IS
C 1 AND EXPAND TO FULL ORDER ..........
840 U = 0.0E0
C
DO 860 I = P, Q
860 U = U + RV6(I)**2
C
XU = 1.0E0 / SQRT(U)
C
870 DO 880 I = 1, N
880 Z(I,R) = 0.0E0
C
DO 900 I = P, Q
900 Z(I,R) = RV6(I) * XU
C
X0 = X1
920 CONTINUE
C
IF (Q .LT. N) GO TO 100
1001 RETURN
END