mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
204 lines
6.2 KiB
FortranFixed
204 lines
6.2 KiB
FortranFixed
|
*DECK TQL2
|
||
|
SUBROUTINE TQL2 (NM, N, D, E, Z, IERR)
|
||
|
C***BEGIN PROLOGUE TQL2
|
||
|
C***PURPOSE Compute the eigenvalues and eigenvectors of symmetric
|
||
|
C tridiagonal matrix.
|
||
|
C***LIBRARY SLATEC (EISPACK)
|
||
|
C***CATEGORY D4A5, D4C2A
|
||
|
C***TYPE SINGLE PRECISION (TQL2-S)
|
||
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
||
|
C***AUTHOR Smith, B. T., et al.
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This subroutine is a translation of the ALGOL procedure TQL2,
|
||
|
C NUM. MATH. 11, 293-306(1968) by Bowdler, Martin, Reinsch, and
|
||
|
C Wilkinson.
|
||
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).
|
||
|
C
|
||
|
C This subroutine finds the eigenvalues and eigenvectors
|
||
|
C of a SYMMETRIC TRIDIAGONAL matrix by the QL method.
|
||
|
C The eigenvectors of a FULL SYMMETRIC matrix can also
|
||
|
C be found if TRED2 has been used to reduce this
|
||
|
C full matrix to tridiagonal form.
|
||
|
C
|
||
|
C On Input
|
||
|
C
|
||
|
C NM must be set to the row dimension of the two-dimensional
|
||
|
C array parameter, Z, as declared in the calling program
|
||
|
C dimension statement. NM is an INTEGER variable.
|
||
|
C
|
||
|
C N is the order of the matrix. N is an INTEGER variable.
|
||
|
C N must be less than or equal to NM.
|
||
|
C
|
||
|
C D contains the diagonal elements of the symmetric tridiagonal
|
||
|
C matrix. D is a one-dimensional REAL array, dimensioned D(N).
|
||
|
C
|
||
|
C E contains the subdiagonal elements of the symmetric
|
||
|
C tridiagonal matrix in its last N-1 positions. E(1) is
|
||
|
C arbitrary. E is a one-dimensional REAL array, dimensioned
|
||
|
C E(N).
|
||
|
C
|
||
|
C Z contains the transformation matrix produced in the
|
||
|
C reduction by TRED2, if performed. If the eigenvectors
|
||
|
C of the tridiagonal matrix are desired, Z must contain
|
||
|
C the identity matrix. Z is a two-dimensional REAL array,
|
||
|
C dimensioned Z(NM,N).
|
||
|
C
|
||
|
C On Output
|
||
|
C
|
||
|
C D contains the eigenvalues in ascending order. If an
|
||
|
C error exit is made, the eigenvalues are correct but
|
||
|
C unordered for indices 1, 2, ..., IERR-1.
|
||
|
C
|
||
|
C E has been destroyed.
|
||
|
C
|
||
|
C Z contains orthonormal eigenvectors of the symmetric
|
||
|
C tridiagonal (or full) matrix. If an error exit is made,
|
||
|
C Z contains the eigenvectors associated with the stored
|
||
|
C eigenvalues.
|
||
|
C
|
||
|
C IERR is an INTEGER flag set to
|
||
|
C Zero for normal return,
|
||
|
C J if the J-th eigenvalue has not been
|
||
|
C determined after 30 iterations.
|
||
|
C
|
||
|
C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
|
||
|
C
|
||
|
C Questions and comments should be directed to B. S. Garbow,
|
||
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
||
|
C ------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
||
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
||
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
||
|
C 1976.
|
||
|
C***ROUTINES CALLED PYTHAG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 760101 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE TQL2
|
||
|
C
|
||
|
INTEGER I,J,K,L,M,N,II,L1,L2,NM,MML,IERR
|
||
|
REAL D(*),E(*),Z(NM,*)
|
||
|
REAL B,C,C2,C3,DL1,EL1,F,G,H,P,R,S,S2
|
||
|
REAL PYTHAG
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT TQL2
|
||
|
IERR = 0
|
||
|
IF (N .EQ. 1) GO TO 1001
|
||
|
C
|
||
|
DO 100 I = 2, N
|
||
|
100 E(I-1) = E(I)
|
||
|
C
|
||
|
F = 0.0E0
|
||
|
B = 0.0E0
|
||
|
E(N) = 0.0E0
|
||
|
C
|
||
|
DO 240 L = 1, N
|
||
|
J = 0
|
||
|
H = ABS(D(L)) + ABS(E(L))
|
||
|
IF (B .LT. H) B = H
|
||
|
C .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT ..........
|
||
|
DO 110 M = L, N
|
||
|
IF (B + ABS(E(M)) .EQ. B) GO TO 120
|
||
|
C .......... E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
|
||
|
C THROUGH THE BOTTOM OF THE LOOP ..........
|
||
|
110 CONTINUE
|
||
|
C
|
||
|
120 IF (M .EQ. L) GO TO 220
|
||
|
130 IF (J .EQ. 30) GO TO 1000
|
||
|
J = J + 1
|
||
|
C .......... FORM SHIFT ..........
|
||
|
L1 = L + 1
|
||
|
L2 = L1 + 1
|
||
|
G = D(L)
|
||
|
P = (D(L1) - G) / (2.0E0 * E(L))
|
||
|
R = PYTHAG(P,1.0E0)
|
||
|
D(L) = E(L) / (P + SIGN(R,P))
|
||
|
D(L1) = E(L) * (P + SIGN(R,P))
|
||
|
DL1 = D(L1)
|
||
|
H = G - D(L)
|
||
|
IF (L2 .GT. N) GO TO 145
|
||
|
C
|
||
|
DO 140 I = L2, N
|
||
|
140 D(I) = D(I) - H
|
||
|
C
|
||
|
145 F = F + H
|
||
|
C .......... QL TRANSFORMATION ..........
|
||
|
P = D(M)
|
||
|
C = 1.0E0
|
||
|
C2 = C
|
||
|
EL1 = E(L1)
|
||
|
S = 0.0E0
|
||
|
MML = M - L
|
||
|
C .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
|
||
|
DO 200 II = 1, MML
|
||
|
C3 = C2
|
||
|
C2 = C
|
||
|
S2 = S
|
||
|
I = M - II
|
||
|
G = C * E(I)
|
||
|
H = C * P
|
||
|
IF (ABS(P) .LT. ABS(E(I))) GO TO 150
|
||
|
C = E(I) / P
|
||
|
R = SQRT(C*C+1.0E0)
|
||
|
E(I+1) = S * P * R
|
||
|
S = C / R
|
||
|
C = 1.0E0 / R
|
||
|
GO TO 160
|
||
|
150 C = P / E(I)
|
||
|
R = SQRT(C*C+1.0E0)
|
||
|
E(I+1) = S * E(I) * R
|
||
|
S = 1.0E0 / R
|
||
|
C = C * S
|
||
|
160 P = C * D(I) - S * G
|
||
|
D(I+1) = H + S * (C * G + S * D(I))
|
||
|
C .......... FORM VECTOR ..........
|
||
|
DO 180 K = 1, N
|
||
|
H = Z(K,I+1)
|
||
|
Z(K,I+1) = S * Z(K,I) + C * H
|
||
|
Z(K,I) = C * Z(K,I) - S * H
|
||
|
180 CONTINUE
|
||
|
C
|
||
|
200 CONTINUE
|
||
|
C
|
||
|
P = -S * S2 * C3 * EL1 * E(L) / DL1
|
||
|
E(L) = S * P
|
||
|
D(L) = C * P
|
||
|
IF (B + ABS(E(L)) .GT. B) GO TO 130
|
||
|
220 D(L) = D(L) + F
|
||
|
240 CONTINUE
|
||
|
C .......... ORDER EIGENVALUES AND EIGENVECTORS ..........
|
||
|
DO 300 II = 2, N
|
||
|
I = II - 1
|
||
|
K = I
|
||
|
P = D(I)
|
||
|
C
|
||
|
DO 260 J = II, N
|
||
|
IF (D(J) .GE. P) GO TO 260
|
||
|
K = J
|
||
|
P = D(J)
|
||
|
260 CONTINUE
|
||
|
C
|
||
|
IF (K .EQ. I) GO TO 300
|
||
|
D(K) = D(I)
|
||
|
D(I) = P
|
||
|
C
|
||
|
DO 280 J = 1, N
|
||
|
P = Z(J,I)
|
||
|
Z(J,I) = Z(J,K)
|
||
|
Z(J,K) = P
|
||
|
280 CONTINUE
|
||
|
C
|
||
|
300 CONTINUE
|
||
|
C
|
||
|
GO TO 1001
|
||
|
C .......... SET ERROR -- NO CONVERGENCE TO AN
|
||
|
C EIGENVALUE AFTER 30 ITERATIONS ..........
|
||
|
1000 IERR = L
|
||
|
1001 RETURN
|
||
|
END
|