OpenLibm/slatec/trisp.f

58 lines
1.6 KiB
FortranFixed
Raw Normal View History

*DECK TRISP
SUBROUTINE TRISP (N, A, B, C, D, U, Z)
C***BEGIN PROLOGUE TRISP
C***SUBSIDIARY
C***PURPOSE Subsidiary to SEPELI
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (TRISP-S)
C***AUTHOR (UNKNOWN)
C***DESCRIPTION
C
C This subroutine solves for a non-zero eigenvector corresponding
C to the zero eigenvalue of the transpose of the rank
C deficient ONE matrix with subdiagonal A, diagonal B, and
C superdiagonal C , with A(1) in the (1,N) position, with
C C(N) in the (N,1) position, and all other elements zero.
C
C***SEE ALSO SEPELI
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 801001 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900402 Added TYPE section. (WRB)
C***END PROLOGUE TRISP
C
DIMENSION A(*) ,B(*) ,C(*) ,D(*) ,
1 U(*) ,Z(*)
C***FIRST EXECUTABLE STATEMENT TRISP
BN = B(N)
D(1) = A(2)/B(1)
V = A(1)
U(1) = C(N)/B(1)
NM2 = N-2
DO 10 J=2,NM2
DEN = B(J)-C(J-1)*D(J-1)
D(J) = A(J+1)/DEN
U(J) = -C(J-1)*U(J-1)/DEN
BN = BN-V*U(J-1)
V = -V*D(J-1)
10 CONTINUE
DEN = B(N-1)-C(N-2)*D(N-2)
D(N-1) = (A(N)-C(N-2)*U(N-2))/DEN
AN = C(N-1)-V*D(N-2)
BN = BN-V*U(N-2)
DEN = BN-AN*D(N-1)
C
C SET LAST COMPONENT EQUAL TO ONE
C
Z(N) = 1.0
Z(N-1) = -D(N-1)
NM1 = N-1
DO 20 J=2,NM1
K = N-J
Z(K) = -D(K)*Z(K+1)-U(K)*Z(N)
20 CONTINUE
RETURN
END