OpenLibm/slatec/wnlit.f

288 lines
8.7 KiB
FortranFixed
Raw Normal View History

*DECK WNLIT
SUBROUTINE WNLIT (W, MDW, M, N, L, IPIVOT, ITYPE, H, SCALE, RNORM,
+ IDOPE, DOPE, DONE)
C***BEGIN PROLOGUE WNLIT
C***SUBSIDIARY
C***PURPOSE Subsidiary to WNNLS
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (WNLIT-S, DWNLIT-D)
C***AUTHOR Hanson, R. J., (SNLA)
C Haskell, K. H., (SNLA)
C***DESCRIPTION
C
C This is a companion subprogram to WNNLS( ).
C The documentation for WNNLS( ) has complete usage instructions.
C
C Note The M by (N+1) matrix W( , ) contains the rt. hand side
C B as the (N+1)st col.
C
C Triangularize L1 by L1 subsystem, where L1=MIN(M,L), with
C col interchanges.
C
C***SEE ALSO WNNLS
C***ROUTINES CALLED H12, ISAMAX, SCOPY, SROTM, SROTMG, SSCAL, SSWAP,
C WNLT1, WNLT2, WNLT3
C***REVISION HISTORY (YYMMDD)
C 790701 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890618 Completely restructured and revised. (WRB & RWC)
C 890620 Revised to make WNLT1, WNLT2, and WNLT3 subroutines. (RWC)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C***END PROLOGUE WNLIT
INTEGER IDOPE(*), IPIVOT(*), ITYPE(*), L, M, MDW, N
REAL DOPE(*), H(*), RNORM, SCALE(*), W(MDW,*)
LOGICAL DONE
C
EXTERNAL H12, ISAMAX, SCOPY, SROTM, SROTMG, SSCAL, SSWAP, WNLT1,
* WNLT2, WNLT3
INTEGER ISAMAX
LOGICAL WNLT2
C
REAL ALSQ, AMAX, EANORM, FACTOR, HBAR, RN, SPARAM(5),
* T, TAU
INTEGER I, I1, IMAX, IR, J, J1, JJ, JP, KRANK, L1, LB, LEND, ME,
* MEND, NIV, NSOLN
LOGICAL INDEP, RECALC
C
C***FIRST EXECUTABLE STATEMENT WNLIT
ME = IDOPE(1)
NSOLN = IDOPE(2)
L1 = IDOPE(3)
C
ALSQ = DOPE(1)
EANORM = DOPE(2)
TAU = DOPE(3)
C
LB = MIN(M-1,L)
RECALC = .TRUE.
RNORM = 0.E0
KRANK = 0
C
C We set FACTOR=1.0 so that the heavy weight ALAMDA will be
C included in the test for column independence.
C
FACTOR = 1.E0
LEND = L
DO 180 I=1,LB
C
C Set IR to point to the I-th row.
C
IR = I
MEND = M
CALL WNLT1 (I, LEND, M, IR, MDW, RECALC, IMAX, HBAR, H, SCALE,
+ W)
C
C Update column SS and find pivot column.
C
CALL WNLT3 (I, IMAX, M, MDW, IPIVOT, H, W)
C
C Perform column interchange.
C Test independence of incoming column.
C
130 IF (WNLT2(ME, MEND, IR, FACTOR, TAU, SCALE, W(1,I))) THEN
C
C Eliminate I-th column below diagonal using modified Givens
C transformations applied to (A B).
C
C When operating near the ME line, use the largest element
C above it as the pivot.
C
DO 160 J=M,I+1,-1
JP = J-1
IF (J.EQ.ME+1) THEN
IMAX = ME
AMAX = SCALE(ME)*W(ME,I)**2
DO 150 JP=J-1,I,-1
T = SCALE(JP)*W(JP,I)**2
IF (T.GT.AMAX) THEN
IMAX = JP
AMAX = T
ENDIF
150 CONTINUE
JP = IMAX
ENDIF
C
IF (W(J,I).NE.0.E0) THEN
CALL SROTMG (SCALE(JP), SCALE(J), W(JP,I), W(J,I),
+ SPARAM)
W(J,I) = 0.E0
CALL SROTM (N+1-I, W(JP,I+1), MDW, W(J,I+1), MDW,
+ SPARAM)
ENDIF
160 CONTINUE
ELSE IF (LEND.GT.I) THEN
C
C Column I is dependent. Swap with column LEND.
C Perform column interchange,
C and find column in remaining set with largest SS.
C
CALL WNLT3 (I, LEND, M, MDW, IPIVOT, H, W)
LEND = LEND - 1
IMAX = ISAMAX(LEND-I+1, H(I), 1) + I - 1
HBAR = H(IMAX)
GO TO 130
ELSE
KRANK = I - 1
GO TO 190
ENDIF
180 CONTINUE
KRANK = L1
C
190 IF (KRANK.LT.ME) THEN
FACTOR = ALSQ
DO 200 I=KRANK+1,ME
CALL SCOPY (L, 0.E0, 0, W(I,1), MDW)
200 CONTINUE
C
C Determine the rank of the remaining equality constraint
C equations by eliminating within the block of constrained
C variables. Remove any redundant constraints.
C
RECALC = .TRUE.
LB = MIN(L+ME-KRANK, N)
DO 270 I=L+1,LB
IR = KRANK + I - L
LEND = N
MEND = ME
CALL WNLT1 (I, LEND, ME, IR, MDW, RECALC, IMAX, HBAR, H,
+ SCALE, W)
C
C Update col ss and find pivot col
C
CALL WNLT3 (I, IMAX, M, MDW, IPIVOT, H, W)
C
C Perform column interchange
C Eliminate elements in the I-th col.
C
DO 240 J=ME,IR+1,-1
IF (W(J,I).NE.0.E0) THEN
CALL SROTMG (SCALE(J-1), SCALE(J), W(J-1,I), W(J,I),
+ SPARAM)
W(J,I) = 0.E0
CALL SROTM (N+1-I, W(J-1,I+1), MDW,W(J,I+1), MDW,
+ SPARAM)
ENDIF
240 CONTINUE
C
C I=column being eliminated.
C Test independence of incoming column.
C Remove any redundant or dependent equality constraints.
C
IF (.NOT.WNLT2(ME, MEND, IR, FACTOR,TAU,SCALE,W(1,I))) THEN
JJ = IR
DO 260 IR=JJ,ME
CALL SCOPY (N, 0.E0, 0, W(IR,1), MDW)
RNORM = RNORM + (SCALE(IR)*W(IR,N+1)/ALSQ)*W(IR,N+1)
W(IR,N+1) = 0.E0
SCALE(IR) = 1.E0
C
C Reclassify the zeroed row as a least squares equation.
C
ITYPE(IR) = 1
260 CONTINUE
C
C Reduce ME to reflect any discovered dependent equality
C constraints.
C
ME = JJ - 1
GO TO 280
ENDIF
270 CONTINUE
ENDIF
C
C Try to determine the variables KRANK+1 through L1 from the
C least squares equations. Continue the triangularization with
C pivot element W(ME+1,I).
C
280 IF (KRANK.LT.L1) THEN
RECALC = .TRUE.
C
C Set FACTOR=ALSQ to remove effect of heavy weight from
C test for column independence.
C
FACTOR = ALSQ
DO 350 I=KRANK+1,L1
C
C Set IR to point to the ME+1-st row.
C
IR = ME+1
LEND = L
MEND = M
CALL WNLT1 (I, L, M, IR, MDW, RECALC, IMAX, HBAR, H, SCALE,
+ W)
C
C Update column SS and find pivot column.
C
CALL WNLT3 (I, IMAX, M, MDW, IPIVOT, H, W)
C
C Perform column interchange.
C Eliminate I-th column below the IR-th element.
C
DO 320 J=M,IR+1,-1
IF (W(J,I).NE.0.E0) THEN
CALL SROTMG (SCALE(J-1), SCALE(J), W(J-1,I), W(J,I),
+ SPARAM)
W(J,I) = 0.E0
CALL SROTM (N+1-I, W(J-1,I+1), MDW, W(J,I+1), MDW,
+ SPARAM)
ENDIF
320 CONTINUE
C
C Test if new pivot element is near zero.
C If so, the column is dependent.
C Then check row norm test to be classified as independent.
C
T = SCALE(IR)*W(IR,I)**2
INDEP = T .GT. (TAU*EANORM)**2
IF (INDEP) THEN
RN = 0.E0
DO 340 I1=IR,M
DO 330 J1=I+1,N
RN = MAX(RN, SCALE(I1)*W(I1,J1)**2)
330 CONTINUE
340 CONTINUE
INDEP = T .GT. RN*TAU**2
ENDIF
C
C If independent, swap the IR-th and KRANK+1-th rows to
C maintain the triangular form. Update the rank indicator
C KRANK and the equality constraint pointer ME.
C
IF (.NOT.INDEP) GO TO 360
CALL SSWAP(N+1, W(KRANK+1,1), MDW, W(IR,1), MDW)
CALL SSWAP(1, SCALE(KRANK+1), 1, SCALE(IR), 1)
C
C Reclassify the least square equation as an equality
C constraint and rescale it.
C
ITYPE(IR) = 0
T = SQRT(SCALE(KRANK+1))
CALL SSCAL(N+1, T, W(KRANK+1,1), MDW)
SCALE(KRANK+1) = ALSQ
ME = ME+1
KRANK = KRANK+1
350 CONTINUE
ENDIF
C
C If pseudorank is less than L, apply Householder transformation.
C from right.
C
360 IF (KRANK.LT.L) THEN
DO 370 J=KRANK,1,-1
CALL H12 (1, J, KRANK+1, L, W(J,1), MDW, H(J), W, MDW, 1,
+ J-1)
370 CONTINUE
ENDIF
C
NIV = KRANK + NSOLN - L
IF (L.EQ.N) DONE = .TRUE.
C
C End of initial triangularization.
C
IDOPE(1) = ME
IDOPE(2) = KRANK
IDOPE(3) = NIV
RETURN
END