OpenLibm/slatec/xadd.f

172 lines
4.6 KiB
FortranFixed
Raw Normal View History

*DECK XADD
SUBROUTINE XADD (X, IX, Y, IY, Z, IZ, IERROR)
C***BEGIN PROLOGUE XADD
C***PURPOSE To provide single-precision floating-point arithmetic
C with an extended exponent range.
C***LIBRARY SLATEC
C***CATEGORY A3D
C***TYPE SINGLE PRECISION (XADD-S, DXADD-D)
C***KEYWORDS EXTENDED-RANGE SINGLE-PRECISION ARITHMETIC
C***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
C Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C REAL X, Y, Z
C INTEGER IX, IY, IZ
C
C FORMS THE EXTENDED-RANGE SUM (Z,IZ) =
C (X,IX) + (Y,IY). (Z,IZ) IS ADJUSTED
C BEFORE RETURNING. THE INPUT OPERANDS
C NEED NOT BE IN ADJUSTED FORM, BUT THEIR
C PRINCIPAL PARTS MUST SATISFY
C RADIX**(-2L).LE.ABS(X).LE.RADIX**(2L),
C RADIX**(-2L).LE.ABS(Y).LE.RADIX**(2L).
C
C***SEE ALSO XSET
C***REFERENCES (NONE)
C***ROUTINES CALLED XADJ
C***COMMON BLOCKS XBLK2
C***REVISION HISTORY (YYMMDD)
C 820712 DATE WRITTEN
C 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE XADD
REAL X, Y, Z
INTEGER IX, IY, IZ
REAL RADIX, RADIXL, RAD2L, DLG10R
INTEGER L, L2, KMAX
COMMON /XBLK2/ RADIX, RADIXL, RAD2L, DLG10R, L, L2, KMAX
SAVE /XBLK2/
C
C
C THE CONDITIONS IMPOSED ON L AND KMAX BY THIS SUBROUTINE
C ARE
C (1) 1 .LT. L .LE. 0.5*LOGR(0.5*DZERO)
C
C (2) NRADPL .LT. L .LE. KMAX/6
C
C (3) KMAX .LE. (2**NBITS - 4*L - 1)/2
C
C THESE CONDITIONS MUST BE MET BY APPROPRIATE CODING
C IN SUBROUTINE XSET.
C
C***FIRST EXECUTABLE STATEMENT XADD
IERROR=0
IF (X.NE.0.0) GO TO 10
Z = Y
IZ = IY
GO TO 220
10 IF (Y.NE.0.0) GO TO 20
Z = X
IZ = IX
GO TO 220
20 CONTINUE
IF (IX.GE.0 .AND. IY.GE.0) GO TO 40
IF (IX.LT.0 .AND. IY.LT.0) GO TO 40
IF (ABS(IX).LE.6*L .AND. ABS(IY).LE.6*L) GO TO 40
IF (IX.GE.0) GO TO 30
Z = Y
IZ = IY
GO TO 220
30 CONTINUE
Z = X
IZ = IX
GO TO 220
40 I = IX - IY
IF (I) 80, 50, 90
50 IF (ABS(X).GT.1.0 .AND. ABS(Y).GT.1.0) GO TO 60
IF (ABS(X).LT.1.0 .AND. ABS(Y).LT.1.0) GO TO 70
Z = X + Y
IZ = IX
GO TO 220
60 S = X/RADIXL
T = Y/RADIXL
Z = S + T
IZ = IX + L
GO TO 220
70 S = X*RADIXL
T = Y*RADIXL
Z = S + T
IZ = IX - L
GO TO 220
80 S = Y
IS = IY
T = X
GO TO 100
90 S = X
IS = IX
T = Y
100 CONTINUE
C
C AT THIS POINT, THE ONE OF (X,IX) OR (Y,IY) THAT HAS THE
C LARGER AUXILIARY INDEX IS STORED IN (S,IS). THE PRINCIPAL
C PART OF THE OTHER INPUT IS STORED IN T.
C
I1 = ABS(I)/L
I2 = MOD(ABS(I),L)
IF (ABS(T).GE.RADIXL) GO TO 130
IF (ABS(T).GE.1.0) GO TO 120
IF (RADIXL*ABS(T).GE.1.0) GO TO 110
J = I1 + 1
T = T*RADIX**(L-I2)
GO TO 140
110 J = I1
T = T*RADIX**(-I2)
GO TO 140
120 J = I1 - 1
IF (J.LT.0) GO TO 110
T = T*RADIX**(-I2)/RADIXL
GO TO 140
130 J = I1 - 2
IF (J.LT.0) GO TO 120
T = T*RADIX**(-I2)/RAD2L
140 CONTINUE
C
C AT THIS POINT, SOME OR ALL OF THE DIFFERENCE IN THE
C AUXILIARY INDICES HAS BEEN USED TO EFFECT A LEFT SHIFT
C OF T. THE SHIFTED VALUE OF T SATISFIES
C
C RADIX**(-2*L) .LE. ABS(T) .LE. 1.0
C
C AND, IF J=0, NO FURTHER SHIFTING REMAINS TO BE DONE.
C
IF (J.EQ.0) GO TO 190
IF (ABS(S).GE.RADIXL .OR. J.GT.3) GO TO 150
IF (ABS(S).GE.1.0) GO TO (180, 150, 150), J
IF (RADIXL*ABS(S).GE.1.0) GO TO (180, 170, 150), J
GO TO (180, 170, 160), J
150 Z = S
IZ = IS
GO TO 220
160 S = S*RADIXL
170 S = S*RADIXL
180 S = S*RADIXL
190 CONTINUE
C
C AT THIS POINT, THE REMAINING DIFFERENCE IN THE
C AUXILIARY INDICES HAS BEEN USED TO EFFECT A RIGHT SHIFT
C OF S. IF THE SHIFTED VALUE OF S WOULD HAVE EXCEEDED
C RADIX**L, THEN (S,IS) IS RETURNED AS THE VALUE OF THE
C SUM.
C
IF (ABS(S).GT.1.0 .AND. ABS(T).GT.1.0) GO TO 200
IF (ABS(S).LT.1.0 .AND. ABS(T).LT.1.0) GO TO 210
Z = S + T
IZ = IS - J*L
GO TO 220
200 S = S/RADIXL
T = T/RADIXL
Z = S + T
IZ = IS - J*L + L
GO TO 220
210 S = S*RADIXL
T = T*RADIXL
Z = S + T
IZ = IS - J*L - L
220 CALL XADJ(Z, IZ,IERROR)
RETURN
END