mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
229 lines
8.1 KiB
FortranFixed
229 lines
8.1 KiB
FortranFixed
|
*DECK XLEGF
|
||
|
SUBROUTINE XLEGF (DNU1, NUDIFF, MU1, MU2, THETA, ID, PQA, IPQA,
|
||
|
1 IERROR)
|
||
|
C***BEGIN PROLOGUE XLEGF
|
||
|
C***PURPOSE Compute normalized Legendre polynomials and associated
|
||
|
C Legendre functions.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY C3A2, C9
|
||
|
C***TYPE SINGLE PRECISION (XLEGF-S, DXLEGF-D)
|
||
|
C***KEYWORDS LEGENDRE FUNCTIONS
|
||
|
C***AUTHOR Smith, John M., (NBS and George Mason University)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C XLEGF: Extended-range Single-precision Legendre Functions
|
||
|
C
|
||
|
C A feature of the XLEGF subroutine for Legendre functions is
|
||
|
C the use of extended-range arithmetic, a software extension of
|
||
|
C ordinary floating-point arithmetic that greatly increases the
|
||
|
C exponent range of the representable numbers. This avoids the
|
||
|
C need for scaling the solutions to lie within the exponent range
|
||
|
C of the most restrictive manufacturer's hardware. The increased
|
||
|
C exponent range is achieved by allocating an integer storage
|
||
|
C location together with each floating-point storage location.
|
||
|
C
|
||
|
C The interpretation of the pair (X,I) where X is floating-point
|
||
|
C and I is integer is X*(IR**I) where IR is the internal radix of
|
||
|
C the computer arithmetic.
|
||
|
C
|
||
|
C This subroutine computes one of the following vectors:
|
||
|
C
|
||
|
C 1. Legendre function of the first kind of negative order, either
|
||
|
C a. P(-MU1,NU,X), P(-MU1-1,NU,X), ..., P(-MU2,NU,X) or
|
||
|
C b. P(-MU,NU1,X), P(-MU,NU1+1,X), ..., P(-MU,NU2,X)
|
||
|
C 2. Legendre function of the second kind, either
|
||
|
C a. Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X) or
|
||
|
C b. Q(MU,NU1,X), Q(MU,NU1+1,X), ..., Q(MU,NU2,X)
|
||
|
C 3. Legendre function of the first kind of positive order, either
|
||
|
C a. P(MU1,NU,X), P(MU1+1,NU,X), ..., P(MU2,NU,X) or
|
||
|
C b. P(MU,NU1,X), P(MU,NU1+1,X), ..., P(MU,NU2,X)
|
||
|
C 4. Normalized Legendre polynomials, either
|
||
|
C a. PN(MU1,NU,X), PN(MU1+1,NU,X), ..., PN(MU2,NU,X) or
|
||
|
C b. PN(MU,NU1,X), PN(MU,NU1+1,X), ..., PN(MU,NU2,X)
|
||
|
C
|
||
|
C where X = COS(THETA).
|
||
|
C
|
||
|
C The input values to XLEGF are DNU1, NUDIFF, MU1, MU2, THETA,
|
||
|
C and ID. These must satisfy
|
||
|
C
|
||
|
C DNU1 is REAL and greater than or equal to -0.5;
|
||
|
C NUDIFF is INTEGER and non-negative;
|
||
|
C MU1 is INTEGER and non-negative;
|
||
|
C MU2 is INTEGER and greater than or equal to MU1;
|
||
|
C THETA is REAL and in the half-open interval (0,PI/2];
|
||
|
C ID is INTEGER and equal to 1, 2, 3 or 4;
|
||
|
C
|
||
|
C and additionally either NUDIFF = 0 or MU2 = MU1.
|
||
|
C
|
||
|
C If ID=1 and NUDIFF=0, a vector of type 1a above is computed
|
||
|
C with NU=DNU1.
|
||
|
C
|
||
|
C If ID=1 and MU1=MU2, a vector of type 1b above is computed
|
||
|
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
|
||
|
C
|
||
|
C If ID=2 and NUDIFF=0, a vector of type 2a above is computed
|
||
|
C with NU=DNU1.
|
||
|
C
|
||
|
C If ID=2 and MU1=MU2, a vector of type 2b above is computed
|
||
|
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
|
||
|
C
|
||
|
C If ID=3 and NUDIFF=0, a vector of type 3a above is computed
|
||
|
C with NU=DNU1.
|
||
|
C
|
||
|
C If ID=3 and MU1=MU2, a vector of type 3b above is computed
|
||
|
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
|
||
|
C
|
||
|
C If ID=4 and NUDIFF=0, a vector of type 4a above is computed
|
||
|
C with NU=DNU1.
|
||
|
C
|
||
|
C If ID=4 and MU1=MU2, a vector of type 4b above is computed
|
||
|
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
|
||
|
C
|
||
|
C In each case the vector of computed Legendre function values
|
||
|
C is returned in the extended-range vector (PQA(I),IPQA(I)). The
|
||
|
C length of this vector is either MU2-MU1+1 or NUDIFF+1.
|
||
|
C
|
||
|
C Where possible, XLEGF returns IPQA(I) as zero. In this case the
|
||
|
C value of the Legendre function is contained entirely in PQA(I),
|
||
|
C so it can be used in subsequent computations without further
|
||
|
C consideration of extended-range arithmetic. If IPQA(I) is nonzero,
|
||
|
C then the value of the Legendre function is not representable in
|
||
|
C floating-point because of underflow or overflow. The program that
|
||
|
C calls XLEGF must test IPQA(I) to ensure correct usage.
|
||
|
C
|
||
|
C IERROR is an error indicator. If no errors are detected, IERROR=0
|
||
|
C when control returns to the calling routine. If an error is detected,
|
||
|
C IERROR is returned as nonzero. The calling routine must check the
|
||
|
C value of IERROR.
|
||
|
C
|
||
|
C If IERROR=110 or 111, invalid input was provided to XLEGF.
|
||
|
C If IERROR=101,102,103, or 104, invalid input was provided to XSET.
|
||
|
C If IERROR=105 or 106, an internal consistency error occurred in
|
||
|
C XSET (probably due to a software malfunction in the library routine
|
||
|
C I1MACH).
|
||
|
C If IERROR=107, an overflow or underflow of an extended-range number
|
||
|
C was detected in XADJ.
|
||
|
C If IERROR=108, an overflow or underflow of an extended-range number
|
||
|
C was detected in XC210.
|
||
|
C
|
||
|
C***SEE ALSO XSET
|
||
|
C***REFERENCES Olver and Smith, Associated Legendre Functions on the
|
||
|
C Cut, J Comp Phys, v 51, n 3, Sept 1983, pp 502--518.
|
||
|
C Smith, Olver and Lozier, Extended-Range Arithmetic and
|
||
|
C Normalized Legendre Polynomials, ACM Trans on Math
|
||
|
C Softw, v 7, n 1, March 1981, pp 93--105.
|
||
|
C***ROUTINES CALLED XERMSG, XPMU, XPMUP, XPNRM, XPQNU, XQMU, XQNU,
|
||
|
C XRED, XSET
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 820728 DATE WRITTEN
|
||
|
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
|
||
|
C 901019 Revisions to prologue. (DWL and WRB)
|
||
|
C 901106 Changed all specific intrinsics to generic. (WRB)
|
||
|
C Corrected order of sections in prologue and added TYPE
|
||
|
C section. (WRB)
|
||
|
C CALLs to XERROR changed to CALLs to XERMSG. (WRB)
|
||
|
C 920127 Revised PURPOSE section of prologue. (DWL)
|
||
|
C***END PROLOGUE XLEGF
|
||
|
REAL PQA,DNU1,DNU2,SX,THETA,X,PI2
|
||
|
DIMENSION PQA(*),IPQA(*)
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT XLEGF
|
||
|
IERROR=0
|
||
|
CALL XSET (0, 0, 0.0, 0,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
PI2=2.*ATAN(1.)
|
||
|
C
|
||
|
C ZERO OUTPUT ARRAYS
|
||
|
C
|
||
|
L=(MU2-MU1)+NUDIFF+1
|
||
|
DO 290 I=1,L
|
||
|
PQA(I)=0.
|
||
|
290 IPQA(I)=0
|
||
|
C
|
||
|
C CHECK FOR VALID INPUT VALUES
|
||
|
C
|
||
|
IF(NUDIFF.LT.0) GO TO 400
|
||
|
IF(DNU1.LT.-.5) GO TO 400
|
||
|
IF(MU2.LT.MU1) GO TO 400
|
||
|
IF(MU1.LT.0) GO TO 400
|
||
|
IF(THETA.LE.0..OR.THETA.GT.PI2) GO TO 420
|
||
|
IF(ID.LT.1.OR.ID.GT.4) GO TO 400
|
||
|
IF((MU1.NE.MU2).AND.(NUDIFF.GT.0)) GO TO 400
|
||
|
C
|
||
|
C IF DNU1 IS NOT AN INTEGER, NORMALIZED P(MU,DNU,X)
|
||
|
C CANNOT BE CALCULATED. IF DNU1 IS AN INTEGER AND
|
||
|
C MU1.GT.DNU2 THEN ALL VALUES OF P(+MU,DNU,X) AND
|
||
|
C NORMALIZED P(MU,NU,X) WILL BE ZERO.
|
||
|
C
|
||
|
DNU2=DNU1+NUDIFF
|
||
|
IF((ID.EQ.3).AND.(MOD(DNU1,1.).NE.0.)) GO TO 295
|
||
|
IF((ID.EQ.4).AND.(MOD(DNU1,1.).NE.0.)) GO TO 400
|
||
|
IF((ID.EQ.3.OR.ID.EQ.4).AND.MU1.GT.DNU2) RETURN
|
||
|
295 CONTINUE
|
||
|
C
|
||
|
X=COS(THETA)
|
||
|
SX=1./SIN(THETA)
|
||
|
IF(ID.EQ.2) GO TO 300
|
||
|
IF(MU2-MU1.LE.0) GO TO 360
|
||
|
C
|
||
|
C FIXED NU, VARIABLE MU
|
||
|
C CALL XPMU TO CALCULATE P(-MU1,NU,X),....,P(-MU2,NU,X)
|
||
|
C
|
||
|
CALL XPMU(DNU1,DNU2,MU1,MU2,THETA,X,SX,ID,PQA,IPQA,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
GO TO 380
|
||
|
C
|
||
|
300 IF(MU2.EQ.MU1) GO TO 320
|
||
|
C
|
||
|
C FIXED NU, VARIABLE MU
|
||
|
C CALL XQMU TO CALCULATE Q(MU1,NU,X),....,Q(MU2,NU,X)
|
||
|
C
|
||
|
CALL XQMU(DNU1,DNU2,MU1,MU2,THETA,X,SX,ID,PQA,IPQA,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
GO TO 390
|
||
|
C
|
||
|
C FIXED MU, VARIABLE NU
|
||
|
C CALL XQNU TO CALCULATE Q(MU,DNU1,X),....,Q(MU,DNU2,X)
|
||
|
C
|
||
|
320 CALL XQNU(DNU1,DNU2,MU1,THETA,X,SX,ID,PQA,IPQA,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
GO TO 390
|
||
|
C
|
||
|
C FIXED MU, VARIABLE NU
|
||
|
C CALL XPQNU TO CALCULATE P(-MU,DNU1,X),....,P(-MU,DNU2,X)
|
||
|
C
|
||
|
360 CALL XPQNU(DNU1,DNU2,MU1,THETA,ID,PQA,IPQA,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
C
|
||
|
C IF ID = 3, TRANSFORM P(-MU,NU,X) VECTOR INTO
|
||
|
C P(MU,NU,X) VECTOR.
|
||
|
C
|
||
|
380 IF(ID.EQ.3) CALL XPMUP(DNU1,DNU2,MU1,MU2,PQA,IPQA,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
C
|
||
|
C IF ID = 4, TRANSFORM P(-MU,NU,X) VECTOR INTO
|
||
|
C NORMALIZED P(MU,NU,X) VECTOR.
|
||
|
C
|
||
|
IF(ID.EQ.4) CALL XPNRM(DNU1,DNU2,MU1,MU2,PQA,IPQA,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
C
|
||
|
C PLACE RESULTS IN REDUCED FORM IF POSSIBLE
|
||
|
C AND RETURN TO MAIN PROGRAM.
|
||
|
C
|
||
|
390 DO 395 I=1,L
|
||
|
CALL XRED(PQA(I),IPQA(I),IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
395 CONTINUE
|
||
|
RETURN
|
||
|
C
|
||
|
C ***** ERROR TERMINATION *****
|
||
|
C
|
||
|
400 CALL XERMSG ('SLATEC', 'XLEGF',
|
||
|
+ 'DNU1, NUDIFF, MU1, MU2, or ID not valid', 110, 1)
|
||
|
IERROR=110
|
||
|
RETURN
|
||
|
420 CALL XERMSG ('SLATEC', 'XLEGF', 'THETA out of range', 111, 1)
|
||
|
IERROR=111
|
||
|
RETURN
|
||
|
END
|