OpenLibm/ld80/e_log10l.c

206 lines
4.5 KiB
C
Raw Normal View History

/* $OpenBSD: e_log10l.c,v 1.2 2013/11/12 20:35:19 martynas Exp $ */
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* log10l.c
*
* Common logarithm, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, log10l();
*
* y = log10l( x );
*
*
*
* DESCRIPTION:
*
* Returns the base 10 logarithm of x.
*
* The argument is separated into its exponent and fractional
* parts. If the exponent is between -1 and +1, the logarithm
* of the fraction is approximated by
*
* log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
*
* Otherwise, setting z = 2(x-1)/x+1),
*
* log(x) = z + z**3 P(z)/Q(z).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0.5, 2.0 30000 9.0e-20 2.6e-20
* IEEE exp(+-10000) 30000 6.0e-20 2.3e-20
*
* In the tests over the interval exp(+-10000), the logarithms
* of the random arguments were uniformly distributed over
* [-10000, +10000].
*
* ERROR MESSAGES:
*
* log singularity: x = 0; returns MINLOG
* log domain: x < 0; returns MINLOG
*/
#include <math.h>
#include "math_private.h"
/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
* 1/sqrt(2) <= x < sqrt(2)
* Theoretical peak relative error = 6.2e-22
*/
static long double P[] = {
4.9962495940332550844739E-1L,
1.0767376367209449010438E1L,
7.7671073698359539859595E1L,
2.5620629828144409632571E2L,
4.2401812743503691187826E2L,
3.4258224542413922935104E2L,
1.0747524399916215149070E2L,
};
static long double Q[] = {
/* 1.0000000000000000000000E0,*/
2.3479774160285863271658E1L,
1.9444210022760132894510E2L,
7.7952888181207260646090E2L,
1.6911722418503949084863E3L,
2.0307734695595183428202E3L,
1.2695660352705325274404E3L,
3.2242573199748645407652E2L,
};
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
* where z = 2(x-1)/(x+1)
* 1/sqrt(2) <= x < sqrt(2)
* Theoretical peak relative error = 6.16e-22
*/
static long double R[4] = {
1.9757429581415468984296E-3L,
-7.1990767473014147232598E-1L,
1.0777257190312272158094E1L,
-3.5717684488096787370998E1L,
};
static long double S[4] = {
/* 1.00000000000000000000E0L,*/
-2.6201045551331104417768E1L,
1.9361891836232102174846E2L,
-4.2861221385716144629696E2L,
};
/* log10(2) */
#define L102A 0.3125L
#define L102B -1.1470004336018804786261e-2L
/* log10(e) */
#define L10EA 0.5L
#define L10EB -6.5705518096748172348871e-2L
#define SQRTH 0.70710678118654752440L
long double
log10l(long double x)
{
long double y;
volatile long double z;
int e;
if( isnan(x) )
return(x);
/* Test for domain */
if( x <= 0.0L )
{
if( x == 0.0L )
return (-1.0L / (x - x));
else
return (x - x) / (x - x);
}
if( x == INFINITY )
return(INFINITY);
/* separate mantissa from exponent */
/* Note, frexp is used so that denormal numbers
* will be handled properly.
*/
x = frexpl( x, &e );
/* logarithm using log(x) = z + z**3 P(z)/Q(z),
* where z = 2(x-1)/x+1)
*/
if( (e > 2) || (e < -2) )
{
if( x < SQRTH )
{ /* 2( 2x-1 )/( 2x+1 ) */
e -= 1;
z = x - 0.5L;
y = 0.5L * z + 0.5L;
}
else
{ /* 2 (x-1)/(x+1) */
z = x - 0.5L;
z -= 0.5L;
y = 0.5L * x + 0.5L;
}
x = z / y;
z = x*x;
y = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) );
goto done;
}
/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
if( x < SQRTH )
{
e -= 1;
x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */
}
else
{
x = x - 1.0L;
}
z = x*x;
y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 7 ) );
y = y - ldexpl( z, -1 ); /* -0.5x^2 + ... */
done:
/* Multiply log of fraction by log10(e)
* and base 2 exponent by log10(2).
*
* ***CAUTION***
*
* This sequence of operations is critical and it may
* be horribly defeated by some compiler optimizers.
*/
z = y * (L10EB);
z += x * (L10EB);
z += e * (L102B);
z += y * (L10EA);
z += x * (L10EA);
z += e * (L102A);
return( z );
}