2014-12-04 18:41:16 +01:00
|
|
|
/* $OpenBSD: e_expl.c,v 1.3 2013/11/12 20:35:18 martynas Exp $ */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* expl.c
|
|
|
|
*
|
|
|
|
* Exponential function, 128-bit long double precision
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* SYNOPSIS:
|
|
|
|
*
|
|
|
|
* long double x, y, expl();
|
|
|
|
*
|
|
|
|
* y = expl( x );
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* DESCRIPTION:
|
|
|
|
*
|
|
|
|
* Returns e (2.71828...) raised to the x power.
|
|
|
|
*
|
|
|
|
* Range reduction is accomplished by separating the argument
|
|
|
|
* into an integer k and fraction f such that
|
|
|
|
*
|
|
|
|
* x k f
|
|
|
|
* e = 2 e.
|
|
|
|
*
|
|
|
|
* A Pade' form of degree 2/3 is used to approximate exp(f) - 1
|
|
|
|
* in the basic range [-0.5 ln 2, 0.5 ln 2].
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* ACCURACY:
|
|
|
|
*
|
|
|
|
* Relative error:
|
|
|
|
* arithmetic domain # trials peak rms
|
|
|
|
* IEEE +-MAXLOG 100,000 2.6e-34 8.6e-35
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Error amplification in the exponential function can be
|
|
|
|
* a serious matter. The error propagation involves
|
|
|
|
* exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
|
|
|
|
* which shows that a 1 lsb error in representing X produces
|
|
|
|
* a relative error of X times 1 lsb in the function.
|
|
|
|
* While the routine gives an accurate result for arguments
|
|
|
|
* that are exactly represented by a long double precision
|
|
|
|
* computer number, the result contains amplified roundoff
|
|
|
|
* error for large arguments not exactly represented.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* ERROR MESSAGES:
|
|
|
|
*
|
|
|
|
* message condition value returned
|
|
|
|
* exp underflow x < MINLOG 0.0
|
|
|
|
* exp overflow x > MAXLOG MAXNUM
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Exponential function */
|
|
|
|
|
|
|
|
#include <float.h>
|
2015-01-09 13:15:01 +01:00
|
|
|
#include <openlibm.h>
|
2014-12-04 18:41:16 +01:00
|
|
|
|
|
|
|
#include "math_private.h"
|
|
|
|
|
|
|
|
/* Pade' coefficients for exp(x) - 1
|
|
|
|
Theoretical peak relative error = 2.2e-37,
|
|
|
|
relative peak error spread = 9.2e-38
|
|
|
|
*/
|
|
|
|
static long double P[5] = {
|
|
|
|
3.279723985560247033712687707263393506266E-10L,
|
|
|
|
6.141506007208645008909088812338454698548E-7L,
|
|
|
|
2.708775201978218837374512615596512792224E-4L,
|
|
|
|
3.508710990737834361215404761139478627390E-2L,
|
|
|
|
9.999999999999999999999999999999999998502E-1L
|
|
|
|
};
|
|
|
|
static long double Q[6] = {
|
|
|
|
2.980756652081995192255342779918052538681E-12L,
|
|
|
|
1.771372078166251484503904874657985291164E-8L,
|
|
|
|
1.504792651814944826817779302637284053660E-5L,
|
|
|
|
3.611828913847589925056132680618007270344E-3L,
|
|
|
|
2.368408864814233538909747618894558968880E-1L,
|
|
|
|
2.000000000000000000000000000000000000150E0L
|
|
|
|
};
|
|
|
|
/* C1 + C2 = ln 2 */
|
|
|
|
static const long double C1 = -6.93145751953125E-1L;
|
|
|
|
static const long double C2 = -1.428606820309417232121458176568075500134E-6L;
|
|
|
|
|
|
|
|
static const long double LOG2EL = 1.442695040888963407359924681001892137426646L;
|
|
|
|
static const long double MAXLOGL = 1.1356523406294143949491931077970764891253E4L;
|
|
|
|
static const long double MINLOGL = -1.143276959615573793352782661133116431383730e4L;
|
|
|
|
static const long double huge = 0x1p10000L;
|
|
|
|
#if 0 /* XXX Prevent gcc from erroneously constant folding this. */
|
|
|
|
static const long double twom10000 = 0x1p-10000L;
|
|
|
|
#else
|
|
|
|
static volatile long double twom10000 = 0x1p-10000L;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
long double
|
|
|
|
expl(long double x)
|
|
|
|
{
|
|
|
|
long double px, xx;
|
|
|
|
int n;
|
|
|
|
|
|
|
|
if( x > MAXLOGL)
|
|
|
|
return (huge*huge); /* overflow */
|
|
|
|
|
|
|
|
if( x < MINLOGL )
|
|
|
|
return (twom10000*twom10000); /* underflow */
|
|
|
|
|
|
|
|
/* Express e**x = e**g 2**n
|
|
|
|
* = e**g e**( n loge(2) )
|
|
|
|
* = e**( g + n loge(2) )
|
|
|
|
*/
|
|
|
|
px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */
|
|
|
|
n = px;
|
|
|
|
x += px * C1;
|
|
|
|
x += px * C2;
|
|
|
|
/* rational approximation for exponential
|
|
|
|
* of the fractional part:
|
|
|
|
* e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
|
|
|
|
*/
|
|
|
|
xx = x * x;
|
|
|
|
px = x * __polevll( xx, P, 4 );
|
|
|
|
xx = __polevll( xx, Q, 5 );
|
|
|
|
x = px/( xx - px );
|
|
|
|
x = 1.0L + x + x;
|
|
|
|
|
|
|
|
x = ldexpl( x, n );
|
|
|
|
return(x);
|
|
|
|
}
|