OpenLibm/slatec/avint.f

179 lines
5.8 KiB
FortranFixed
Raw Normal View History

*DECK AVINT
SUBROUTINE AVINT (X, Y, N, XLO, XUP, ANS, IERR)
C***BEGIN PROLOGUE AVINT
C***PURPOSE Integrate a function tabulated at arbitrarily spaced
C abscissas using overlapping parabolas.
C***LIBRARY SLATEC
C***CATEGORY H2A1B2
C***TYPE SINGLE PRECISION (AVINT-S, DAVINT-D)
C***KEYWORDS INTEGRATION, QUADRATURE, TABULATED DATA
C***AUTHOR Jones, R. E., (SNLA)
C***DESCRIPTION
C
C Abstract
C AVINT integrates a function tabulated at arbitrarily spaced
C abscissas. The limits of integration need not coincide
C with the tabulated abscissas.
C
C A method of overlapping parabolas fitted to the data is used
C provided that there are at least 3 abscissas between the
C limits of integration. AVINT also handles two special cases.
C If the limits of integration are equal, AVINT returns a result
C of zero regardless of the number of tabulated values.
C If there are only two function values, AVINT uses the
C trapezoid rule.
C
C Description of Parameters
C The user must dimension all arrays appearing in the call list
C X(N), Y(N).
C
C Input--
C X - real array of abscissas, which must be in increasing
C order.
C Y - real array of functional values. i.e., Y(I)=FUNC(X(I)).
C N - the integer number of function values supplied.
C N .GE. 2 unless XLO = XUP.
C XLO - real lower limit of integration.
C XUP - real upper limit of integration.
C Must have XLO .LE. XUP.
C
C Output--
C ANS - computed approximate value of integral
C IERR - a status code
C --normal code
C =1 means the requested integration was performed.
C --abnormal codes
C =2 means XUP was less than XLO.
C =3 means the number of X(I) between XLO and XUP
C (inclusive) was less than 3 and neither of the two
C special cases described in the Abstract occurred.
C No integration was performed.
C =4 means the restriction X(I+1) .GT. X(I) was violated.
C =5 means the number N of function values was .LT. 2.
C ANS is set to zero if IERR=2,3,4,or 5.
C
C AVINT is documented completely in SC-M-69-335
C Original program from "Numerical Integration" by Davis &
C Rabinowitz.
C Adaptation and modifications for Sandia Mathematical Program
C Library by Rondall E. Jones.
C
C***REFERENCES R. E. Jones, Approximate integrator of functions
C tabulated at arbitrarily spaced abscissas,
C Report SC-M-69-335, Sandia Laboratories, 1969.
C***ROUTINES CALLED XERMSG
C***REVISION HISTORY (YYMMDD)
C 690901 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE AVINT
C
DOUBLE PRECISION R3,RP5,SUM,SYL,SYL2,SYL3,SYU,SYU2,SYU3,X1,X2,X3
1,X12,X13,X23,TERM1,TERM2,TERM3,A,B,C,CA,CB,CC
DIMENSION X(*),Y(*)
C***FIRST EXECUTABLE STATEMENT AVINT
IERR=1
ANS =0.0
IF (XLO-XUP) 3,100,200
3 IF (N.LT.2) GO TO 215
DO 5 I=2,N
IF (X(I).LE.X(I-1)) GO TO 210
IF (X(I).GT.XUP) GO TO 6
5 CONTINUE
6 CONTINUE
IF (N.GE.3) GO TO 9
C
C SPECIAL N=2 CASE
SLOPE = (Y(2)-Y(1))/(X(2)-X(1))
FL = Y(1) + SLOPE*(XLO-X(1))
FR = Y(2) + SLOPE*(XUP-X(2))
ANS = 0.5*(FL+FR)*(XUP-XLO)
RETURN
9 CONTINUE
IF (X(N-2).LT.XLO) GO TO 205
IF (X(3).GT.XUP) GO TO 205
I = 1
10 IF (X(I).GE.XLO) GO TO 15
I = I+1
GO TO 10
15 INLFT = I
I = N
20 IF (X(I).LE.XUP) GO TO 25
I = I-1
GO TO 20
25 INRT = I
IF ((INRT-INLFT).LT.2) GO TO 205
ISTART = INLFT
IF (INLFT.EQ.1) ISTART = 2
ISTOP = INRT
IF (INRT.EQ.N) ISTOP = N-1
C
R3 = 3.0D0
RP5= 0.5D0
SUM = 0.0
SYL = XLO
SYL2= SYL*SYL
SYL3= SYL2*SYL
C
DO 50 I=ISTART,ISTOP
X1 = X(I-1)
X2 = X(I)
X3 = X(I+1)
X12 = X1-X2
X13 = X1-X3
X23 = X2-X3
TERM1 = DBLE(Y(I-1))/(X12*X13)
TERM2 =-DBLE(Y(I)) /(X12*X23)
TERM3 = DBLE(Y(I+1))/(X13*X23)
A = TERM1+TERM2+TERM3
B = -(X2+X3)*TERM1 - (X1+X3)*TERM2 - (X1+X2)*TERM3
C = X2*X3*TERM1 + X1*X3*TERM2 + X1*X2*TERM3
IF (I-ISTART) 30,30,35
30 CA = A
CB = B
CC = C
GO TO 40
35 CA = 0.5*(A+CA)
CB = 0.5*(B+CB)
CC = 0.5*(C+CC)
40 SYU = X2
SYU2= SYU*SYU
SYU3= SYU2*SYU
SUM = SUM + CA*(SYU3-SYL3)/R3 + CB*RP5*(SYU2-SYL2) + CC*(SYU-SYL)
CA = A
CB = B
CC = C
SYL = SYU
SYL2= SYU2
SYL3= SYU3
50 CONTINUE
SYU = XUP
ANS = SUM + CA*(SYU**3-SYL3)/R3 + CB*RP5*(SYU**2-SYL2)
1 + CC*(SYU-SYL)
100 RETURN
200 IERR=2
CALL XERMSG ('SLATEC', 'AVINT',
+ 'THE UPPER LIMIT OF INTEGRATION WAS NOT GREATER THAN THE ' //
+ 'LOWER LIMIT.', 4, 1)
RETURN
205 IERR=3
CALL XERMSG ('SLATEC', 'AVINT',
+ 'THERE WERE LESS THAN THREE FUNCTION VALUES BETWEEN THE ' //
+ 'LIMITS OF INTEGRATION.', 4, 1)
RETURN
210 IERR=4
CALL XERMSG ('SLATEC', 'AVINT',
+ 'THE ABSCISSAS WERE NOT STRICTLY INCREASING. MUST HAVE ' //
+ 'X(I-1) .LT. X(I) FOR ALL I.', 4, 1)
RETURN
215 IERR=5
CALL XERMSG ('SLATEC', 'AVINT',
+ 'LESS THAN TWO FUNCTION VALUES WERE SUPPLIED.', 4, 1)
RETURN
END