OpenLibm/slatec/bandr.f

289 lines
9.1 KiB
FortranFixed
Raw Normal View History

*DECK BANDR
SUBROUTINE BANDR (NM, N, MB, A, D, E, E2, MATZ, Z)
C***BEGIN PROLOGUE BANDR
C***PURPOSE Reduce a real symmetric band matrix to symmetric
C tridiagonal matrix and, optionally, accumulate
C orthogonal similarity transformations.
C***LIBRARY SLATEC (EISPACK)
C***CATEGORY D4C1B1
C***TYPE SINGLE PRECISION (BANDR-S)
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
C***AUTHOR Smith, B. T., et al.
C***DESCRIPTION
C
C This subroutine is a translation of the ALGOL procedure BANDRD,
C NUM. MATH. 12, 231-241(1968) by Schwarz.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 273-283(1971).
C
C This subroutine reduces a REAL SYMMETRIC BAND matrix
C to a symmetric tridiagonal matrix using and optionally
C accumulating orthogonal similarity transformations.
C
C On INPUT
C
C NM must be set to the row dimension of the two-dimensional
C array parameters, A and Z, as declared in the calling
C program dimension statement. NM is an INTEGER variable.
C
C N is the order of the matrix A. N is an INTEGER variable.
C N must be less than or equal to NM.
C
C MB is the (half) band width of the matrix, defined as the
C number of adjacent diagonals, including the principal
C diagonal, required to specify the non-zero portion of the
C lower triangle of the matrix. MB is less than or equal
C to N. MB is an INTEGER variable.
C
C A contains the lower triangle of the real symmetric band
C matrix. Its lowest subdiagonal is stored in the last
C N+1-MB positions of the first column, its next subdiagonal
C in the last N+2-MB positions of the second column, further
C subdiagonals similarly, and finally its principal diagonal
C in the N positions of the last column. Contents of storage
C locations not part of the matrix are arbitrary. A is a
C two-dimensional REAL array, dimensioned A(NM,MB).
C
C MATZ should be set to .TRUE. if the transformation matrix is
C to be accumulated, and to .FALSE. otherwise. MATZ is a
C LOGICAL variable.
C
C On OUTPUT
C
C A has been destroyed, except for its last two columns which
C contain a copy of the tridiagonal matrix.
C
C D contains the diagonal elements of the tridiagonal matrix.
C D is a one-dimensional REAL array, dimensioned D(N).
C
C E contains the subdiagonal elements of the tridiagonal
C matrix in its last N-1 positions. E(1) is set to zero.
C E is a one-dimensional REAL array, dimensioned E(N).
C
C E2 contains the squares of the corresponding elements of E.
C E2 may coincide with E if the squares are not needed.
C E2 is a one-dimensional REAL array, dimensioned E2(N).
C
C Z contains the orthogonal transformation matrix produced in
C the reduction if MATZ has been set to .TRUE. Otherwise, Z
C is not referenced. Z is a two-dimensional REAL array,
C dimensioned Z(NM,N).
C
C Questions and comments should be directed to B. S. Garbow,
C Applied Mathematics Division, ARGONNE NATIONAL LABORATORY
C ------------------------------------------------------------------
C
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C system Routines - EISPACK Guide, Springer-Verlag,
C 1976.
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 760101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE BANDR
C
INTEGER J,K,L,N,R,I1,I2,J1,J2,KR,MB,MR,M1,NM,N2,R1,UGL,MAXL,MAXR
REAL A(NM,*),D(*),E(*),E2(*),Z(NM,*)
REAL G,U,B1,B2,C2,F1,F2,S2,DMIN,DMINRT
LOGICAL MATZ
C
C***FIRST EXECUTABLE STATEMENT BANDR
DMIN = 2.0E0**(-64)
DMINRT = 2.0E0**(-32)
C .......... INITIALIZE DIAGONAL SCALING MATRIX ..........
DO 30 J = 1, N
30 D(J) = 1.0E0
C
IF (.NOT. MATZ) GO TO 60
C
DO 50 J = 1, N
C
DO 40 K = 1, N
40 Z(J,K) = 0.0E0
C
Z(J,J) = 1.0E0
50 CONTINUE
C
60 M1 = MB - 1
IF (M1 - 1) 900, 800, 70
70 N2 = N - 2
C
DO 700 K = 1, N2
MAXR = MIN(M1,N-K)
C .......... FOR R=MAXR STEP -1 UNTIL 2 DO -- ..........
DO 600 R1 = 2, MAXR
R = MAXR + 2 - R1
KR = K + R
MR = MB - R
G = A(KR,MR)
A(KR-1,1) = A(KR-1,MR+1)
UGL = K
C
DO 500 J = KR, N, M1
J1 = J - 1
J2 = J1 - 1
IF (G .EQ. 0.0E0) GO TO 600
B1 = A(J1,1) / G
B2 = B1 * D(J1) / D(J)
S2 = 1.0E0 / (1.0E0 + B1 * B2)
IF (S2 .GE. 0.5E0 ) GO TO 450
B1 = G / A(J1,1)
B2 = B1 * D(J) / D(J1)
C2 = 1.0E0 - S2
D(J1) = C2 * D(J1)
D(J) = C2 * D(J)
F1 = 2.0E0 * A(J,M1)
F2 = B1 * A(J1,MB)
A(J,M1) = -B2 * (B1 * A(J,M1) - A(J,MB)) - F2 + A(J,M1)
A(J1,MB) = B2 * (B2 * A(J,MB) + F1) + A(J1,MB)
A(J,MB) = B1 * (F2 - F1) + A(J,MB)
C
DO 200 L = UGL, J2
I2 = MB - J + L
U = A(J1,I2+1) + B2 * A(J,I2)
A(J,I2) = -B1 * A(J1,I2+1) + A(J,I2)
A(J1,I2+1) = U
200 CONTINUE
C
UGL = J
A(J1,1) = A(J1,1) + B2 * G
IF (J .EQ. N) GO TO 350
MAXL = MIN(M1,N-J1)
C
DO 300 L = 2, MAXL
I1 = J1 + L
I2 = MB - L
U = A(I1,I2) + B2 * A(I1,I2+1)
A(I1,I2+1) = -B1 * A(I1,I2) + A(I1,I2+1)
A(I1,I2) = U
300 CONTINUE
C
I1 = J + M1
IF (I1 .GT. N) GO TO 350
G = B2 * A(I1,1)
350 IF (.NOT. MATZ) GO TO 500
C
DO 400 L = 1, N
U = Z(L,J1) + B2 * Z(L,J)
Z(L,J) = -B1 * Z(L,J1) + Z(L,J)
Z(L,J1) = U
400 CONTINUE
C
GO TO 500
C
450 U = D(J1)
D(J1) = S2 * D(J)
D(J) = S2 * U
F1 = 2.0E0 * A(J,M1)
F2 = B1 * A(J,MB)
U = B1 * (F2 - F1) + A(J1,MB)
A(J,M1) = B2 * (B1 * A(J,M1) - A(J1,MB)) + F2 - A(J,M1)
A(J1,MB) = B2 * (B2 * A(J1,MB) + F1) + A(J,MB)
A(J,MB) = U
C
DO 460 L = UGL, J2
I2 = MB - J + L
U = B2 * A(J1,I2+1) + A(J,I2)
A(J,I2) = -A(J1,I2+1) + B1 * A(J,I2)
A(J1,I2+1) = U
460 CONTINUE
C
UGL = J
A(J1,1) = B2 * A(J1,1) + G
IF (J .EQ. N) GO TO 480
MAXL = MIN(M1,N-J1)
C
DO 470 L = 2, MAXL
I1 = J1 + L
I2 = MB - L
U = B2 * A(I1,I2) + A(I1,I2+1)
A(I1,I2+1) = -A(I1,I2) + B1 * A(I1,I2+1)
A(I1,I2) = U
470 CONTINUE
C
I1 = J + M1
IF (I1 .GT. N) GO TO 480
G = A(I1,1)
A(I1,1) = B1 * A(I1,1)
480 IF (.NOT. MATZ) GO TO 500
C
DO 490 L = 1, N
U = B2 * Z(L,J1) + Z(L,J)
Z(L,J) = -Z(L,J1) + B1 * Z(L,J)
Z(L,J1) = U
490 CONTINUE
C
500 CONTINUE
C
600 CONTINUE
C
IF (MOD(K,64) .NE. 0) GO TO 700
C .......... RESCALE TO AVOID UNDERFLOW OR OVERFLOW ..........
DO 650 J = K, N
IF (D(J) .GE. DMIN) GO TO 650
MAXL = MAX(1,MB+1-J)
C
DO 610 L = MAXL, M1
610 A(J,L) = DMINRT * A(J,L)
C
IF (J .EQ. N) GO TO 630
MAXL = MIN(M1,N-J)
C
DO 620 L = 1, MAXL
I1 = J + L
I2 = MB - L
A(I1,I2) = DMINRT * A(I1,I2)
620 CONTINUE
C
630 IF (.NOT. MATZ) GO TO 645
C
DO 640 L = 1, N
640 Z(L,J) = DMINRT * Z(L,J)
C
645 A(J,MB) = DMIN * A(J,MB)
D(J) = D(J) / DMIN
650 CONTINUE
C
700 CONTINUE
C .......... FORM SQUARE ROOT OF SCALING MATRIX ..........
800 DO 810 J = 2, N
810 E(J) = SQRT(D(J))
C
IF (.NOT. MATZ) GO TO 840
C
DO 830 J = 1, N
C
DO 820 K = 2, N
820 Z(J,K) = E(K) * Z(J,K)
C
830 CONTINUE
C
840 U = 1.0E0
C
DO 850 J = 2, N
A(J,M1) = U * E(J) * A(J,M1)
U = E(J)
E2(J) = A(J,M1) ** 2
A(J,MB) = D(J) * A(J,MB)
D(J) = A(J,MB)
E(J) = A(J,M1)
850 CONTINUE
C
D(1) = A(1,MB)
E(1) = 0.0E0
E2(1) = 0.0E0
GO TO 1001
C
900 DO 950 J = 1, N
D(J) = A(J,MB)
E(J) = 0.0E0
E2(J) = 0.0E0
950 CONTINUE
C
1001 RETURN
END