OpenLibm/slatec/besi.f

463 lines
12 KiB
FortranFixed
Raw Normal View History

*DECK BESI
SUBROUTINE BESI (X, ALPHA, KODE, N, Y, NZ)
C***BEGIN PROLOGUE BESI
C***PURPOSE Compute an N member sequence of I Bessel functions
C I/SUB(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
C EXP(-X)*I/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative
C ALPHA and X.
C***LIBRARY SLATEC
C***CATEGORY C10B3
C***TYPE SINGLE PRECISION (BESI-S, DBESI-D)
C***KEYWORDS I BESSEL FUNCTION, SPECIAL FUNCTIONS
C***AUTHOR Amos, D. E., (SNLA)
C Daniel, S. L., (SNLA)
C***DESCRIPTION
C
C Abstract
C BESI computes an N member sequence of I Bessel functions
C I/sub(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
C EXP(-X)*I/sub(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
C and X. A combination of the power series, the asymptotic
C expansion for X to infinity, and the uniform asymptotic
C expansion for NU to infinity are applied over subdivisions of
C the (NU,X) plane. For values not covered by one of these
C formulae, the order is incremented by an integer so that one
C of these formulae apply. Backward recursion is used to reduce
C orders by integer values. The asymptotic expansion for X to
C infinity is used only when the entire sequence (specifically
C the last member) lies within the region covered by the
C expansion. Leading terms of these expansions are used to test
C for over or underflow where appropriate. If a sequence is
C requested and the last member would underflow, the result is
C set to zero and the next lower order tried, etc., until a
C member comes on scale or all are set to zero. An overflow
C cannot occur with scaling.
C
C Description of Arguments
C
C Input
C X - X .GE. 0.0E0
C ALPHA - order of first member of the sequence,
C ALPHA .GE. 0.0E0
C KODE - a parameter to indicate the scaling option
C KODE=1 returns
C Y(K)= I/sub(ALPHA+K-1)/(X),
C K=1,...,N
C KODE=2 returns
C Y(K)=EXP(-X)*I/sub(ALPHA+K-1)/(X),
C K=1,...,N
C N - number of members in the sequence, N .GE. 1
C
C Output
C Y - a vector whose first N components contain
C values for I/sub(ALPHA+K-1)/(X) or scaled
C values for EXP(-X)*I/sub(ALPHA+K-1)/(X),
C K=1,...,N depending on KODE
C NZ - number of components of Y set to zero due to
C underflow,
C NZ=0 , normal return, computation completed
C NZ .NE. 0, last NZ components of Y set to zero,
C Y(K)=0.0E0, K=N-NZ+1,...,N.
C
C Error Conditions
C Improper input arguments - a fatal error
C Overflow with KODE=1 - a fatal error
C Underflow - a non-fatal error (NZ .NE. 0)
C
C***REFERENCES D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600
C subroutines IBESS and JBESS for Bessel functions
C I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
C Transactions on Mathematical Software 3, (1977),
C pp. 76-92.
C F. W. J. Olver, Tables of Bessel Functions of Moderate
C or Large Orders, NPL Mathematical Tables 6, Her
C Majesty's Stationery Office, London, 1962.
C***ROUTINES CALLED ALNGAM, ASYIK, I1MACH, R1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 750101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE BESI
C
INTEGER I, IALP, IN, INLIM, IS, I1, K, KK, KM, KODE, KT,
1 N, NN, NS, NZ
INTEGER I1MACH
REAL AIN, AK, AKM, ALPHA, ANS, AP, ARG, ATOL, TOLLN, DFN,
1 DTM, DX, EARG, ELIM, ETX, FLGIK,FN, FNF, FNI,FNP1,FNU,GLN,RA,
2 RTTPI, S, SX, SXO2, S1, S2, T, TA, TB, TEMP, TFN, TM, TOL,
3 TRX, T2, X, XO2, XO2L, Y, Z
REAL R1MACH, ALNGAM
DIMENSION Y(*), TEMP(3)
SAVE RTTPI, INLIM
DATA RTTPI / 3.98942280401433E-01/
DATA INLIM / 80 /
C***FIRST EXECUTABLE STATEMENT BESI
NZ = 0
KT = 1
C I1MACH(15) REPLACES I1MACH(12) IN A DOUBLE PRECISION CODE
C I1MACH(14) REPLACES I1MACH(11) IN A DOUBLE PRECISION CODE
RA = R1MACH(3)
TOL = MAX(RA,1.0E-15)
I1 = -I1MACH(12)
GLN = R1MACH(5)
ELIM = 2.303E0*(I1*GLN-3.0E0)
C TOLLN = -LN(TOL)
I1 = I1MACH(11)+1
TOLLN = 2.303E0*GLN*I1
TOLLN = MIN(TOLLN,34.5388E0)
IF (N-1) 590, 10, 20
10 KT = 2
20 NN = N
IF (KODE.LT.1 .OR. KODE.GT.2) GO TO 570
IF (X) 600, 30, 80
30 IF (ALPHA) 580, 40, 50
40 Y(1) = 1.0E0
IF (N.EQ.1) RETURN
I1 = 2
GO TO 60
50 I1 = 1
60 DO 70 I=I1,N
Y(I) = 0.0E0
70 CONTINUE
RETURN
80 CONTINUE
IF (ALPHA.LT.0.0E0) GO TO 580
C
IALP = INT(ALPHA)
FNI = IALP + N - 1
FNF = ALPHA - IALP
DFN = FNI + FNF
FNU = DFN
IN = 0
XO2 = X*0.5E0
SXO2 = XO2*XO2
ETX = KODE - 1
SX = ETX*X
C
C DECISION TREE FOR REGION WHERE SERIES, ASYMPTOTIC EXPANSION FOR X
C TO INFINITY AND ASYMPTOTIC EXPANSION FOR NU TO INFINITY ARE
C APPLIED.
C
IF (SXO2.LE.(FNU+1.0E0)) GO TO 90
IF (X.LE.12.0E0) GO TO 110
FN = 0.55E0*FNU*FNU
FN = MAX(17.0E0,FN)
IF (X.GE.FN) GO TO 430
ANS = MAX(36.0E0-FNU,0.0E0)
NS = INT(ANS)
FNI = FNI + NS
DFN = FNI + FNF
FN = DFN
IS = KT
KM = N - 1 + NS
IF (KM.GT.0) IS = 3
GO TO 120
90 FN = FNU
FNP1 = FN + 1.0E0
XO2L = LOG(XO2)
IS = KT
IF (X.LE.0.5E0) GO TO 230
NS = 0
100 FNI = FNI + NS
DFN = FNI + FNF
FN = DFN
FNP1 = FN + 1.0E0
IS = KT
IF (N-1+NS.GT.0) IS = 3
GO TO 230
110 XO2L = LOG(XO2)
NS = INT(SXO2-FNU)
GO TO 100
120 CONTINUE
C
C OVERFLOW TEST ON UNIFORM ASYMPTOTIC EXPANSION
C
IF (KODE.EQ.2) GO TO 130
IF (ALPHA.LT.1.0E0) GO TO 150
Z = X/ALPHA
RA = SQRT(1.0E0+Z*Z)
GLN = LOG((1.0E0+RA)/Z)
T = RA*(1.0E0-ETX) + ETX/(Z+RA)
ARG = ALPHA*(T-GLN)
IF (ARG.GT.ELIM) GO TO 610
IF (KM.EQ.0) GO TO 140
130 CONTINUE
C
C UNDERFLOW TEST ON UNIFORM ASYMPTOTIC EXPANSION
C
Z = X/FN
RA = SQRT(1.0E0+Z*Z)
GLN = LOG((1.0E0+RA)/Z)
T = RA*(1.0E0-ETX) + ETX/(Z+RA)
ARG = FN*(T-GLN)
140 IF (ARG.LT.(-ELIM)) GO TO 280
GO TO 190
150 IF (X.GT.ELIM) GO TO 610
GO TO 130
C
C UNIFORM ASYMPTOTIC EXPANSION FOR NU TO INFINITY
C
160 IF (KM.NE.0) GO TO 170
Y(1) = TEMP(3)
RETURN
170 TEMP(1) = TEMP(3)
IN = NS
KT = 1
I1 = 0
180 CONTINUE
IS = 2
FNI = FNI - 1.0E0
DFN = FNI + FNF
FN = DFN
IF(I1.EQ.2) GO TO 350
Z = X/FN
RA = SQRT(1.0E0+Z*Z)
GLN = LOG((1.0E0+RA)/Z)
T = RA*(1.0E0-ETX) + ETX/(Z+RA)
ARG = FN*(T-GLN)
190 CONTINUE
I1 = ABS(3-IS)
I1 = MAX(I1,1)
FLGIK = 1.0E0
CALL ASYIK(X,FN,KODE,FLGIK,RA,ARG,I1,TEMP(IS))
GO TO (180, 350, 510), IS
C
C SERIES FOR (X/2)**2.LE.NU+1
C
230 CONTINUE
GLN = ALNGAM(FNP1)
ARG = FN*XO2L - GLN - SX
IF (ARG.LT.(-ELIM)) GO TO 300
EARG = EXP(ARG)
240 CONTINUE
S = 1.0E0
IF (X.LT.TOL) GO TO 260
AK = 3.0E0
T2 = 1.0E0
T = 1.0E0
S1 = FN
DO 250 K=1,17
S2 = T2 + S1
T = T*SXO2/S2
S = S + T
IF (ABS(T).LT.TOL) GO TO 260
T2 = T2 + AK
AK = AK + 2.0E0
S1 = S1 + FN
250 CONTINUE
260 CONTINUE
TEMP(IS) = S*EARG
GO TO (270, 350, 500), IS
270 EARG = EARG*FN/XO2
FNI = FNI - 1.0E0
DFN = FNI + FNF
FN = DFN
IS = 2
GO TO 240
C
C SET UNDERFLOW VALUE AND UPDATE PARAMETERS
C
280 Y(NN) = 0.0E0
NN = NN - 1
FNI = FNI - 1.0E0
DFN = FNI + FNF
FN = DFN
IF (NN-1) 340, 290, 130
290 KT = 2
IS = 2
GO TO 130
300 Y(NN) = 0.0E0
NN = NN - 1
FNP1 = FN
FNI = FNI - 1.0E0
DFN = FNI + FNF
FN = DFN
IF (NN-1) 340, 310, 320
310 KT = 2
IS = 2
320 IF (SXO2.LE.FNP1) GO TO 330
GO TO 130
330 ARG = ARG - XO2L + LOG(FNP1)
IF (ARG.LT.(-ELIM)) GO TO 300
GO TO 230
340 NZ = N - NN
RETURN
C
C BACKWARD RECURSION SECTION
C
350 CONTINUE
NZ = N - NN
360 CONTINUE
IF(KT.EQ.2) GO TO 420
S1 = TEMP(1)
S2 = TEMP(2)
TRX = 2.0E0/X
DTM = FNI
TM = (DTM+FNF)*TRX
IF (IN.EQ.0) GO TO 390
C BACKWARD RECUR TO INDEX ALPHA+NN-1
DO 380 I=1,IN
S = S2
S2 = TM*S2 + S1
S1 = S
DTM = DTM - 1.0E0
TM = (DTM+FNF)*TRX
380 CONTINUE
Y(NN) = S1
IF (NN.EQ.1) RETURN
Y(NN-1) = S2
IF (NN.EQ.2) RETURN
GO TO 400
390 CONTINUE
C BACKWARD RECUR FROM INDEX ALPHA+NN-1 TO ALPHA
Y(NN) = S1
Y(NN-1) = S2
IF (NN.EQ.2) RETURN
400 K = NN + 1
DO 410 I=3,NN
K = K - 1
Y(K-2) = TM*Y(K-1) + Y(K)
DTM = DTM - 1.0E0
TM = (DTM+FNF)*TRX
410 CONTINUE
RETURN
420 Y(1) = TEMP(2)
RETURN
C
C ASYMPTOTIC EXPANSION FOR X TO INFINITY
C
430 CONTINUE
EARG = RTTPI/SQRT(X)
IF (KODE.EQ.2) GO TO 440
IF (X.GT.ELIM) GO TO 610
EARG = EARG*EXP(X)
440 ETX = 8.0E0*X
IS = KT
IN = 0
FN = FNU
450 DX = FNI + FNI
TM = 0.0E0
IF (FNI.EQ.0.0E0 .AND. ABS(FNF).LT.TOL) GO TO 460
TM = 4.0E0*FNF*(FNI+FNI+FNF)
460 CONTINUE
DTM = DX*DX
S1 = ETX
TRX = DTM - 1.0E0
DX = -(TRX+TM)/ETX
T = DX
S = 1.0E0 + DX
ATOL = TOL*ABS(S)
S2 = 1.0E0
AK = 8.0E0
DO 470 K=1,25
S1 = S1 + ETX
S2 = S2 + AK
DX = DTM - S2
AP = DX + TM
T = -T*AP/S1
S = S + T
IF (ABS(T).LE.ATOL) GO TO 480
AK = AK + 8.0E0
470 CONTINUE
480 TEMP(IS) = S*EARG
IF(IS.EQ.2) GO TO 360
IS = 2
FNI = FNI - 1.0E0
DFN = FNI + FNF
FN = DFN
GO TO 450
C
C BACKWARD RECURSION WITH NORMALIZATION BY
C ASYMPTOTIC EXPANSION FOR NU TO INFINITY OR POWER SERIES.
C
500 CONTINUE
C COMPUTATION OF LAST ORDER FOR SERIES NORMALIZATION
AKM = MAX(3.0E0-FN,0.0E0)
KM = INT(AKM)
TFN = FN + KM
TA = (GLN+TFN-0.9189385332E0-0.0833333333E0/TFN)/(TFN+0.5E0)
TA = XO2L - TA
TB = -(1.0E0-1.0E0/TFN)/TFN
AIN = TOLLN/(-TA+SQRT(TA*TA-TOLLN*TB)) + 1.5E0
IN = INT(AIN)
IN = IN + KM
GO TO 520
510 CONTINUE
C COMPUTATION OF LAST ORDER FOR ASYMPTOTIC EXPANSION NORMALIZATION
T = 1.0E0/(FN*RA)
AIN = TOLLN/(GLN+SQRT(GLN*GLN+T*TOLLN)) + 1.5E0
IN = INT(AIN)
IF (IN.GT.INLIM) GO TO 160
520 CONTINUE
TRX = 2.0E0/X
DTM = FNI + IN
TM = (DTM+FNF)*TRX
TA = 0.0E0
TB = TOL
KK = 1
530 CONTINUE
C
C BACKWARD RECUR UNINDEXED
C
DO 540 I=1,IN
S = TB
TB = TM*TB + TA
TA = S
DTM = DTM - 1.0E0
TM = (DTM+FNF)*TRX
540 CONTINUE
C NORMALIZATION
IF (KK.NE.1) GO TO 550
TA = (TA/TB)*TEMP(3)
TB = TEMP(3)
KK = 2
IN = NS
IF (NS.NE.0) GO TO 530
550 Y(NN) = TB
NZ = N - NN
IF (NN.EQ.1) RETURN
TB = TM*TB + TA
K = NN - 1
Y(K) = TB
IF (NN.EQ.2) RETURN
DTM = DTM - 1.0E0
TM = (DTM+FNF)*TRX
KM = K - 1
C
C BACKWARD RECUR INDEXED
C
DO 560 I=1,KM
Y(K-1) = TM*Y(K) + Y(K+1)
DTM = DTM - 1.0E0
TM = (DTM+FNF)*TRX
K = K - 1
560 CONTINUE
RETURN
C
C
C
570 CONTINUE
CALL XERMSG ('SLATEC', 'BESI',
+ 'SCALING OPTION, KODE, NOT 1 OR 2.', 2, 1)
RETURN
580 CONTINUE
CALL XERMSG ('SLATEC', 'BESI', 'ORDER, ALPHA, LESS THAN ZERO.',
+ 2, 1)
RETURN
590 CONTINUE
CALL XERMSG ('SLATEC', 'BESI', 'N LESS THAN ONE.', 2, 1)
RETURN
600 CONTINUE
CALL XERMSG ('SLATEC', 'BESI', 'X LESS THAN ZERO.', 2, 1)
RETURN
610 CONTINUE
CALL XERMSG ('SLATEC', 'BESI',
+ 'OVERFLOW, X TOO LARGE FOR KODE = 1.', 6, 1)
RETURN
END