OpenLibm/slatec/betai.f

119 lines
3.5 KiB
FortranFixed
Raw Normal View History

*DECK BETAI
REAL FUNCTION BETAI (X, PIN, QIN)
C***BEGIN PROLOGUE BETAI
C***PURPOSE Calculate the incomplete Beta function.
C***LIBRARY SLATEC (FNLIB)
C***CATEGORY C7F
C***TYPE SINGLE PRECISION (BETAI-S, DBETAI-D)
C***KEYWORDS FNLIB, INCOMPLETE BETA FUNCTION, SPECIAL FUNCTIONS
C***AUTHOR Fullerton, W., (LANL)
C***DESCRIPTION
C
C BETAI calculates the REAL incomplete beta function.
C
C The incomplete beta function ratio is the probability that a
C random variable from a beta distribution having parameters PIN and
C QIN will be less than or equal to X.
C
C -- Input Arguments -- All arguments are REAL.
C X upper limit of integration. X must be in (0,1) inclusive.
C PIN first beta distribution parameter. PIN must be .GT. 0.0.
C QIN second beta distribution parameter. QIN must be .GT. 0.0.
C
C***REFERENCES Nancy E. Bosten and E. L. Battiste, Remark on Algorithm
C 179, Communications of the ACM 17, 3 (March 1974),
C pp. 156.
C***ROUTINES CALLED ALBETA, R1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 770401 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
C***END PROLOGUE BETAI
LOGICAL FIRST
SAVE EPS, ALNEPS, SML, ALNSML, FIRST
DATA FIRST /.TRUE./
C***FIRST EXECUTABLE STATEMENT BETAI
IF (FIRST) THEN
EPS = R1MACH(3)
ALNEPS = LOG(EPS)
SML = R1MACH(1)
ALNSML = LOG(SML)
ENDIF
FIRST = .FALSE.
C
IF (X .LT. 0. .OR. X .GT. 1.0) CALL XERMSG ('SLATEC', 'BETAI',
+ 'X IS NOT IN THE RANGE (0,1)', 1, 2)
IF (PIN .LE. 0. .OR. QIN .LE. 0.) CALL XERMSG ('SLATEC', 'BETAI',
+ 'P AND/OR Q IS LE ZERO', 2, 2)
C
Y = X
P = PIN
Q = QIN
IF (Q.LE.P .AND. X.LT.0.8) GO TO 20
IF (X.LT.0.2) GO TO 20
Y = 1.0 - Y
P = QIN
Q = PIN
C
20 IF ((P+Q)*Y/(P+1.).LT.EPS) GO TO 80
C
C EVALUATE THE INFINITE SUM FIRST.
C TERM WILL EQUAL Y**P/BETA(PS,P) * (1.-PS)I * Y**I / FAC(I)
C
PS = Q - AINT(Q)
IF (PS.EQ.0.) PS = 1.0
XB = P*LOG(Y) - ALBETA(PS, P) - LOG(P)
BETAI = 0.0
IF (XB.LT.ALNSML) GO TO 40
C
BETAI = EXP (XB)
TERM = BETAI*P
IF (PS.EQ.1.0) GO TO 40
C
N = MAX (ALNEPS/LOG(Y), 4.0E0)
DO 30 I=1,N
TERM = TERM*(I-PS)*Y/I
BETAI = BETAI + TERM/(P+I)
30 CONTINUE
C
C NOW EVALUATE THE FINITE SUM, MAYBE.
C
40 IF (Q.LE.1.0) GO TO 70
C
XB = P*LOG(Y) + Q*LOG(1.0-Y) - ALBETA(P,Q) - LOG(Q)
IB = MAX (XB/ALNSML, 0.0E0)
TERM = EXP (XB - IB*ALNSML)
C = 1.0/(1.0-Y)
P1 = Q*C/(P+Q-1.)
C
FINSUM = 0.0
N = Q
IF (Q.EQ.REAL(N)) N = N - 1
DO 50 I=1,N
IF (P1.LE.1.0 .AND. TERM/EPS.LE.FINSUM) GO TO 60
TERM = (Q-I+1)*C*TERM/(P+Q-I)
C
IF (TERM.GT.1.0) IB = IB - 1
IF (TERM.GT.1.0) TERM = TERM*SML
C
IF (IB.EQ.0) FINSUM = FINSUM + TERM
50 CONTINUE
C
60 BETAI = BETAI + FINSUM
70 IF (Y.NE.X .OR. P.NE.PIN) BETAI = 1.0 - BETAI
BETAI = MAX (MIN (BETAI, 1.0), 0.0)
RETURN
C
80 BETAI = 0.0
XB = P*LOG(MAX(Y,SML)) - LOG(P) - ALBETA(P,Q)
IF (XB.GT.ALNSML .AND. Y.NE.0.) BETAI = EXP (XB)
IF (Y.NE.X .OR. P.NE.PIN) BETAI = 1.0 - BETAI
RETURN
C
END