OpenLibm/slatec/bksol.f

46 lines
1.3 KiB
FortranFixed
Raw Normal View History

*DECK BKSOL
SUBROUTINE BKSOL (N, A, X)
C***BEGIN PROLOGUE BKSOL
C***SUBSIDIARY
C***PURPOSE Subsidiary to BVSUP
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (BKSOL-S, DBKSOL-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C **********************************************************************
C Solution of an upper triangular linear system by
C back-substitution
C
C The matrix A is assumed to be stored in a linear
C array proceeding in a row-wise manner. The
C vector X contains the given constant vector on input
C and contains the solution on return.
C The actual diagonal of A is unity while a diagonal
C scaling matrix is stored there.
C **********************************************************************
C
C***SEE ALSO BVSUP
C***ROUTINES CALLED SDOT
C***REVISION HISTORY (YYMMDD)
C 750601 DATE WRITTEN
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 910722 Updated AUTHOR section. (ALS)
C***END PROLOGUE BKSOL
C
DIMENSION A(*),X(*)
C
C***FIRST EXECUTABLE STATEMENT BKSOL
M=(N*(N+1))/2
X(N)=X(N)*A(M)
IF (N .EQ. 1) GO TO 20
NM1=N-1
DO 10 K=1,NM1
J=N-K
M=M-K-1
10 X(J)=X(J)*A(M) - SDOT(K,A(M+1),1,X(J+1),1)
C
20 RETURN
END