OpenLibm/slatec/bvalu.f

166 lines
5.6 KiB
FortranFixed
Raw Normal View History

*DECK BVALU
FUNCTION BVALU (T, A, N, K, IDERIV, X, INBV, WORK)
C***BEGIN PROLOGUE BVALU
C***PURPOSE Evaluate the B-representation of a B-spline at X for the
C function value or any of its derivatives.
C***LIBRARY SLATEC
C***CATEGORY E3, K6
C***TYPE SINGLE PRECISION (BVALU-S, DBVALU-D)
C***KEYWORDS DIFFERENTIATION OF B-SPLINE, EVALUATION OF B-SPLINE
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C Written by Carl de Boor and modified by D. E. Amos
C
C Abstract
C BVALU is the BVALUE function of the reference.
C
C BVALU evaluates the B-representation (T,A,N,K) of a B-spline
C at X for the function value on IDERIV = 0 or any of its
C derivatives on IDERIV = 1,2,...,K-1. Right limiting values
C (right derivatives) are returned except at the right end
C point X=T(N+1) where left limiting values are computed. The
C spline is defined on T(K) .LE. X .LE. T(N+1). BVALU returns
C a fatal error message when X is outside of this interval.
C
C To compute left derivatives or left limiting values at a
C knot T(I), replace N by I-1 and set X=T(I), I=K+1,N+1.
C
C BVALU calls INTRV
C
C Description of Arguments
C Input
C T - knot vector of length N+K
C A - B-spline coefficient vector of length N
C N - number of B-spline coefficients
C N = sum of knot multiplicities-K
C K - order of the B-spline, K .GE. 1
C IDERIV - order of the derivative, 0 .LE. IDERIV .LE. K-1
C IDERIV=0 returns the B-spline value
C X - argument, T(K) .LE. X .LE. T(N+1)
C INBV - an initialization parameter which must be set
C to 1 the first time BVALU is called.
C
C Output
C INBV - INBV contains information for efficient process-
C ing after the initial call and INBV must not
C be changed by the user. Distinct splines require
C distinct INBV parameters.
C WORK - work vector of length 3*K.
C BVALU - value of the IDERIV-th derivative at X
C
C Error Conditions
C An improper input is a fatal error
C
C***REFERENCES Carl de Boor, Package for calculating with B-splines,
C SIAM Journal on Numerical Analysis 14, 3 (June 1977),
C pp. 441-472.
C***ROUTINES CALLED INTRV, XERMSG
C***REVISION HISTORY (YYMMDD)
C 800901 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE BVALU
C
INTEGER I,IDERIV,IDERP1,IHI,IHMKMJ,ILO,IMK,IMKPJ, INBV, IPJ,
1 IP1, IP1MJ, J, JJ, J1, J2, K, KMIDER, KMJ, KM1, KPK, MFLAG, N
REAL A, FKMJ, T, WORK, X
C DIMENSION T(N+K), WORK(3*K)
DIMENSION T(*), A(*), WORK(*)
C***FIRST EXECUTABLE STATEMENT BVALU
BVALU = 0.0E0
IF(K.LT.1) GO TO 102
IF(N.LT.K) GO TO 101
IF(IDERIV.LT.0 .OR. IDERIV.GE.K) GO TO 110
KMIDER = K - IDERIV
C
C *** FIND *I* IN (K,N) SUCH THAT T(I) .LE. X .LT. T(I+1)
C (OR, .LE. T(I+1) IF T(I) .LT. T(I+1) = T(N+1)).
KM1 = K - 1
CALL INTRV(T, N+1, X, INBV, I, MFLAG)
IF (X.LT.T(K)) GO TO 120
IF (MFLAG.EQ.0) GO TO 20
IF (X.GT.T(I)) GO TO 130
10 IF (I.EQ.K) GO TO 140
I = I - 1
IF (X.EQ.T(I)) GO TO 10
C
C *** DIFFERENCE THE COEFFICIENTS *IDERIV* TIMES
C WORK(I) = AJ(I), WORK(K+I) = DP(I), WORK(K+K+I) = DM(I), I=1.K
C
20 IMK = I - K
DO 30 J=1,K
IMKPJ = IMK + J
WORK(J) = A(IMKPJ)
30 CONTINUE
IF (IDERIV.EQ.0) GO TO 60
DO 50 J=1,IDERIV
KMJ = K - J
FKMJ = KMJ
DO 40 JJ=1,KMJ
IHI = I + JJ
IHMKMJ = IHI - KMJ
WORK(JJ) = (WORK(JJ+1)-WORK(JJ))/(T(IHI)-T(IHMKMJ))*FKMJ
40 CONTINUE
50 CONTINUE
C
C *** COMPUTE VALUE AT *X* IN (T(I),(T(I+1)) OF IDERIV-TH DERIVATIVE,
C GIVEN ITS RELEVANT B-SPLINE COEFF. IN AJ(1),...,AJ(K-IDERIV).
60 IF (IDERIV.EQ.KM1) GO TO 100
IP1 = I + 1
KPK = K + K
J1 = K + 1
J2 = KPK + 1
DO 70 J=1,KMIDER
IPJ = I + J
WORK(J1) = T(IPJ) - X
IP1MJ = IP1 - J
WORK(J2) = X - T(IP1MJ)
J1 = J1 + 1
J2 = J2 + 1
70 CONTINUE
IDERP1 = IDERIV + 1
DO 90 J=IDERP1,KM1
KMJ = K - J
ILO = KMJ
DO 80 JJ=1,KMJ
WORK(JJ) = (WORK(JJ+1)*WORK(KPK+ILO)+WORK(JJ)
1 *WORK(K+JJ))/(WORK(KPK+ILO)+WORK(K+JJ))
ILO = ILO - 1
80 CONTINUE
90 CONTINUE
100 BVALU = WORK(1)
RETURN
C
C
101 CONTINUE
CALL XERMSG ('SLATEC', 'BVALU', 'N DOES NOT SATISFY N.GE.K', 2,
+ 1)
RETURN
102 CONTINUE
CALL XERMSG ('SLATEC', 'BVALU', 'K DOES NOT SATISFY K.GE.1', 2,
+ 1)
RETURN
110 CONTINUE
CALL XERMSG ('SLATEC', 'BVALU',
+ 'IDERIV DOES NOT SATISFY 0.LE.IDERIV.LT.K', 2, 1)
RETURN
120 CONTINUE
CALL XERMSG ('SLATEC', 'BVALU',
+ 'X IS N0T GREATER THAN OR EQUAL TO T(K)', 2, 1)
RETURN
130 CONTINUE
CALL XERMSG ('SLATEC', 'BVALU',
+ 'X IS NOT LESS THAN OR EQUAL TO T(N+1)', 2, 1)
RETURN
140 CONTINUE
CALL XERMSG ('SLATEC', 'BVALU',
+ 'A LEFT LIMITING VALUE CANNOT BE OBTAINED AT T(K)', 2, 1)
RETURN
END