OpenLibm/slatec/bvpor.f

295 lines
11 KiB
FortranFixed
Raw Normal View History

*DECK BVPOR
SUBROUTINE BVPOR (Y, NROWY, NCOMP, XPTS, NXPTS, A, NROWA, ALPHA,
+ NIC, B, NROWB, BETA, NFC, IFLAG, Z, MXNON, P, NTP, IP, W, NIV,
+ YHP, U, V, COEF, S, STOWA, G, WORK, IWORK, NFCC)
C***BEGIN PROLOGUE BVPOR
C***SUBSIDIARY
C***PURPOSE Subsidiary to BVSUP
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (BVPOR-S, DBVPOR-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C **********************************************************************
C INPUT to BVPOR (items not defined in BVSUP comments)
C **********************************************************************
C
C NOPG = 0 -- Orthonormalization points not pre-assigned
C = 1 -- Orthonormalization points pre-assigned
C
C MXNON = Maximum number of orthogonalizations allowed.
C
C NDISK = 0 -- IN-CORE storage
C = 1 -- DISK storage. Value of NTAPE in data statement
C is set to 13. If another value is desired,
C the data statement must be changed.
C
C INTEG = Type of integrator and associated test to be used
C to determine when to orthonormalize.
C
C 1 -- Use GRAM-SCHMIDT test and DERKF
C 2 -- Use GRAM-SCHMIDT test and DEABM
C
C TOL = Tolerance for allowable error in orthogonalization test.
C
C NPS = 0 Normalize particular solution to unit length at each
C point of orthonormalization.
C = 1 Do not normalize particular solution.
C
C NTP = Must be .GE. NFC*(NFC+1)/2.
C
C
C NFCC = 2*NFC for special treatment of a complex valued problem
C
C ICOCO = 0 Skip final computations (superposition coefficients
C and ,hence, boundary problem solution)
C = 1 Calculate superposition coefficients and obtain
C solution to the boundary value problem
C
C **********************************************************************
C OUTPUT from BVPOR
C **********************************************************************
C
C Y(NROWY,NXPTS) = Solution at specified output points.
C
C MXNON = Number of orthonormalizations performed by BVPOR.
C
C Z(MXNON+1) = Locations of orthonormalizations performed by BVPOR.
C
C NIV = Number of independent vectors returned from MGSBV. Normally
C this parameter will be meaningful only when MGSBV returns with
C MFLAG = 2.
C
C **********************************************************************
C
C The following variables are in the argument list because of
C variable dimensioning. In general, they contain no information of
C use to the user. The amount of storage set aside by the user must
C be greater than or equal to that indicated by the dimension
C statements. For the DISK storage mode, NON = 0 and KPTS = 1,
C while for the IN-CORE storage mode, NON = MXNON and KPTS = NXPTS.
C
C P(NTP,NON+1)
C IP(NFCC,NON+1)
C YHP(NCOMP,NFC+1) plus an additional column of the length NEQIVP
C U(NCOMP,NFC,KPTS)
C V(NCOMP,KPTS)
C W(NFCC,NON+1)
C COEF(NFCC)
C S(NFC+1)
C STOWA(NCOMP*(NFC+1)+NEQIVP+1)
C G(NCOMP)
C WORK(KKKWS)
C IWORK(LLLIWS)
C
C **********************************************************************
C Subroutines used by BVPOR
C LSSUDS -- Solves an underdetermined system of linear
C equations. This routine is used to get a full
C set of initial conditions for integration.
C Called by BVPOR
C
C SVECS -- Obtains starting vectors for special treatment
C of complex valued problems , called by BVPOR
C
C RKFAB -- Routine which conducts integration using DERKF or
C DEABM
C
C STWAY -- Storage for backup capability, called by
C BVPOR and REORT
C
C STOR1 -- Storage at output points, called by BVPOR,
C RKFAB, REORT and STWAY.
C
C SDOT -- Single precision vector inner product routine,
C called by BVPOR, SCOEF, LSSUDS, MGSBV,
C BKSOL, REORT and PRVEC.
C ** NOTE **
C A considerable improvement in speed can be achieved if a
C machine language version is used for SDOT.
C
C SCOEF -- Computes the superposition constants from the
C boundary conditions at Xfinal.
C
C BKSOL -- Solves an upper triangular set of linear equations.
C
C **********************************************************************
C
C***SEE ALSO BVSUP
C***ROUTINES CALLED BKSOL, LSSUDS, RKFAB, SCOEF, SDOT, STOR1, STWAY,
C SVECS
C***COMMON BLOCKS ML15TO, ML18JR, ML8SZ
C***REVISION HISTORY (YYMMDD)
C 750601 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890921 Realigned order of variables in certain COMMON blocks.
C (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 910722 Updated AUTHOR section. (ALS)
C***END PROLOGUE BVPOR
C
DIMENSION Y(NROWY,*),A(NROWA,*),ALPHA(*),B(NROWB,*),
1 BETA(*),P(NTP,*),IP(NFCC,*),
2 U(NCOMP,NFC,*),V(NCOMP,*),W(NFCC,*),
3 COEF(*),Z(*),YHP(NCOMP,*),XPTS(*),S(*),
4 WORK(*),IWORK(*),STOWA(*),G(*)
C
C **********************************************************************
C
COMMON /ML8SZ/ C,XSAV,IGOFX,INHOMO,IVP,NCOMPD,NFCD
COMMON /ML15TO/ PX,PWCND,TND,X,XBEG,XEND,XOT,XOP,INFO(15),ISTKOP,
1 KNSWOT,KOP,LOTJP,MNSWOT,NSWOT
COMMON /ML18JR/ AE,RE,TOL,NXPTSD,NICD,NOPG,MXNOND,NDISK,NTAPE,
1 NEQ,INDPVT,INTEG,NPS,NTPD,NEQIVP,NUMORT,NFCCD,
2 ICOCO
C
C **********************************************************************
C
C***FIRST EXECUTABLE STATEMENT BVPOR
NFCP1 = NFC + 1
NUMORT = 0
C = 1.0
C
C **********************************************************************
C CALCULATE INITIAL CONDITIONS WHICH SATISFY
C A*YH(XINITIAL)=0 AND A*YP(XINITIAL)=ALPHA.
C WHEN NFC .NE. NFCC LSSUDS DEFINES VALUES YHP IN A MATRIX OF SIZE
C (NFCC+1)*NCOMP AND ,HENCE, OVERFLOWS THE STORAGE ALLOCATION INTO
C THE U ARRAY. HOWEVER, THIS IS OKAY SINCE PLENTY OF SPACE IS
C AVAILABLE IN U AND IT HAS NOT YET BEEN USED.
C
NDW = NROWA * NCOMP
KWS = NDW + NIC + 1
KWD = KWS + NIC
KWT = KWD + NIC
KWC = KWT + NIC
IFLAG = 0
CALL LSSUDS(A,YHP(1,NFCC+1),ALPHA,NIC,NCOMP,NROWA,YHP,NCOMP,
1 IFLAG,1,IRA,0,WORK(1),WORK(NDW+1),IWORK,WORK(KWS),
2 WORK(KWD),WORK(KWT),ISFLG,WORK(KWC))
IF (IFLAG .EQ. 1) GO TO 3
IFLAG=-4
GO TO 250
3 IF (NFC .NE. NFCC) CALL SVECS(NCOMP,NFC,YHP,WORK,IWORK,
1 INHOMO,IFLAG)
IF (IFLAG .EQ. 1) GO TO 5
IFLAG=-5
GO TO 250
C
C **********************************************************************
C DETERMINE THE NUMBER OF DIFFERENTIAL EQUATIONS TO BE INTEGRATED,
C INITIALIZE VARIABLES FOR AUXILIARY INITIAL VALUE PROBLEM AND
C STORE INITIAL CONDITIONS.
C
5 NEQ = NCOMP * NFC
IF (INHOMO .EQ. 1) NEQ = NEQ + NCOMP
IVP = 0
IF (NEQIVP .EQ. 0) GO TO 10
IVP = NEQ
NEQ = NEQ + NEQIVP
NFCP2 = NFCP1
IF (INHOMO .EQ. 1) NFCP2 = NFCP1 + 1
DO 7 K = 1,NEQIVP
7 YHP(K,NFCP2) = ALPHA(NIC+K)
10 CALL STOR1(U,YHP,V,YHP(1,NFCP1),0,NDISK,NTAPE)
C
C **********************************************************************
C SET UP DATA FOR THE ORTHONORMALIZATION TESTING PROCEDURE AND
C SAVE INITIAL CONDITIONS IN CASE A RESTART IS NECESSARY.
C
NSWOT=1
KNSWOT=0
LOTJP=1
TND=LOG10(10.*TOL)
PWCND=LOG10(SQRT(TOL))
X=XBEG
PX=X
XOT=XEND
XOP=X
KOP=1
CALL STWAY(U,V,YHP,0,STOWA)
C
C **********************************************************************
C ******** FORWARD INTEGRATION OF ALL INITIAL VALUE EQUATIONS **********
C **********************************************************************
C
CALL RKFAB(NCOMP,XPTS,NXPTS,NFC,IFLAG,Z,MXNON,P,NTP,IP,
1 YHP,NIV,U,V,W,S,STOWA,G,WORK,IWORK,NFCC)
IF (IFLAG .NE. 0 .OR. ICOCO .EQ. 0) GO TO 250
C
C **********************************************************************
C **************** BACKWARD SWEEP TO OBTAIN SOLUTION *******************
C **********************************************************************
C
C CALCULATE SUPERPOSITION COEFFICIENTS AT XFINAL.
C
C FOR THE DISK STORAGE VERSION, IT IS NOT NECESSARY TO READ U AND V
C AT THE LAST OUTPUT POINT, SINCE THE LOCAL COPY OF EACH STILL EXISTS.
C
KOD = 1
IF (NDISK .EQ. 0) KOD = NXPTS
I1=1+NFCC*NFCC
I2=I1+NFCC
CALL SCOEF(U(1,1,KOD),V(1,KOD),NCOMP,NROWB,NFC,NIC,B,BETA,COEF,
1 INHOMO,RE,AE,WORK,WORK(I1),WORK(I2),IWORK,IFLAG,NFCC)
C
C **********************************************************************
C CALCULATE SOLUTION AT OUTPUT POINTS BY RECURRING BACKWARDS.
C AS WE RECUR BACKWARDS FROM XFINAL TO XINITIAL WE MUST CALCULATE
C NEW SUPERPOSITION COEFFICIENTS EACH TIME WE CROSS A POINT OF
C ORTHONORMALIZATION.
C
K = NUMORT
NCOMP2=NCOMP/2
IC=1
IF (NFC .NE. NFCC) IC=2
DO 200 J = 1,NXPTS
KPTS = NXPTS - J + 1
KOD = KPTS
IF (NDISK .EQ. 1) KOD = 1
135 IF (K .EQ. 0) GO TO 170
IF (XEND.GT.XBEG .AND. XPTS(KPTS).GE.Z(K)) GO TO 170
IF (XEND.LT.XBEG .AND. XPTS(KPTS).LE.Z(K)) GO TO 170
NON = K
IF (NDISK .EQ. 0) GO TO 136
NON = 1
BACKSPACE NTAPE
READ (NTAPE) (IP(I,1), I = 1,NFCC),(P(I,1), I = 1,NTP)
BACKSPACE NTAPE
136 IF (INHOMO .NE. 1) GO TO 150
IF (NDISK .EQ. 0) GO TO 138
BACKSPACE NTAPE
READ (NTAPE) (W(I,1), I = 1,NFCC)
BACKSPACE NTAPE
138 DO 140 N = 1,NFCC
140 COEF(N) = COEF(N) - W(N,NON)
150 CALL BKSOL(NFCC,P(1,NON),COEF)
DO 155 M = 1,NFCC
155 WORK(M) = COEF(M)
DO 160 M = 1,NFCC
L = IP(M,NON)
160 COEF(L) = WORK(M)
K = K - 1
GO TO 135
170 IF (NDISK .EQ. 0) GO TO 175
BACKSPACE NTAPE
READ (NTAPE) (V(I,1), I = 1,NCOMP),
1 ((U(I,M,1), I = 1,NCOMP), M = 1,NFC)
BACKSPACE NTAPE
175 DO 180 N = 1,NCOMP
180 Y(N,KPTS) = V(N,KOD) + SDOT(NFC,U(N,1,KOD),NCOMP,COEF,IC)
IF (NFC .EQ. NFCC) GO TO 200
DO 190 N=1,NCOMP2
NN=NCOMP2+N
Y(N,KPTS)=Y(N,KPTS) - SDOT(NFC,U(NN,1,KOD),NCOMP,COEF(2),2)
190 Y(NN,KPTS)=Y(NN,KPTS) + SDOT(NFC,U(N,1,KOD),NCOMP,COEF(2),2)
200 CONTINUE
C
C **********************************************************************
C
250 MXNON = NUMORT
RETURN
END