OpenLibm/slatec/cacon.f

161 lines
4.5 KiB
FortranFixed
Raw Normal View History

*DECK CACON
SUBROUTINE CACON (Z, FNU, KODE, MR, N, Y, NZ, RL, FNUL, TOL, ELIM,
+ ALIM)
C***BEGIN PROLOGUE CACON
C***SUBSIDIARY
C***PURPOSE Subsidiary to CBESH and CBESK
C***LIBRARY SLATEC
C***TYPE ALL (CACON-A, ZACON-A)
C***AUTHOR Amos, D. E., (SNL)
C***DESCRIPTION
C
C CACON APPLIES THE ANALYTIC CONTINUATION FORMULA
C
C K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN)
C MP=PI*MR*CMPLX(0.0,1.0)
C
C TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT
C HALF Z PLANE
C
C***SEE ALSO CBESH, CBESK
C***ROUTINES CALLED CBINU, CBKNU, CS1S2, R1MACH
C***REVISION HISTORY (YYMMDD)
C 830501 DATE WRITTEN
C 910415 Prologue converted to Version 4.0 format. (BAB)
C***END PROLOGUE CACON
COMPLEX CK, CONE, CS, CSCL, CSCR, CSGN, CSPN, CSS, CSR, C1, C2,
* RZ, SC1, SC2, ST, S1, S2, Y, Z, ZN, CY
REAL ALIM, ARG, ASCLE, AS2, BSCLE, BRY, CPN, C1I, C1M, C1R, ELIM,
* FMR, FNU, FNUL, PI, RL, SGN, SPN, TOL, YY, R1MACH
INTEGER I, INU, IUF, KFLAG, KODE, MR, N, NN, NW, NZ
DIMENSION Y(N), CY(2), CSS(3), CSR(3), BRY(3)
DATA PI / 3.14159265358979324E0 /
DATA CONE / (1.0E0,0.0E0) /
C***FIRST EXECUTABLE STATEMENT CACON
NZ = 0
ZN = -Z
NN = N
CALL CBINU(ZN, FNU, KODE, NN, Y, NW, RL, FNUL, TOL, ELIM, ALIM)
IF (NW.LT.0) GO TO 80
C-----------------------------------------------------------------------
C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION
C-----------------------------------------------------------------------
NN = MIN(2,N)
CALL CBKNU(ZN, FNU, KODE, NN, CY, NW, TOL, ELIM, ALIM)
IF (NW.NE.0) GO TO 80
S1 = CY(1)
FMR = MR
SGN = -SIGN(PI,FMR)
CSGN = CMPLX(0.0E0,SGN)
IF (KODE.EQ.1) GO TO 10
YY = -AIMAG(ZN)
CPN = COS(YY)
SPN = SIN(YY)
CSGN = CSGN*CMPLX(CPN,SPN)
10 CONTINUE
C-----------------------------------------------------------------------
C CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
C WHEN FNU IS LARGE
C-----------------------------------------------------------------------
INU = FNU
ARG = (FNU-INU)*SGN
CPN = COS(ARG)
SPN = SIN(ARG)
CSPN = CMPLX(CPN,SPN)
IF (MOD(INU,2).EQ.1) CSPN = -CSPN
IUF = 0
C1 = S1
C2 = Y(1)
ASCLE = 1.0E+3*R1MACH(1)/TOL
IF (KODE.EQ.1) GO TO 20
CALL CS1S2(ZN, C1, C2, NW, ASCLE, ALIM, IUF)
NZ = NZ + NW
SC1 = C1
20 CONTINUE
Y(1) = CSPN*C1 + CSGN*C2
IF (N.EQ.1) RETURN
CSPN = -CSPN
S2 = CY(2)
C1 = S2
C2 = Y(2)
IF (KODE.EQ.1) GO TO 30
CALL CS1S2(ZN, C1, C2, NW, ASCLE, ALIM, IUF)
NZ = NZ + NW
SC2 = C1
30 CONTINUE
Y(2) = CSPN*C1 + CSGN*C2
IF (N.EQ.2) RETURN
CSPN = -CSPN
RZ = CMPLX(2.0E0,0.0E0)/ZN
CK = CMPLX(FNU+1.0E0,0.0E0)*RZ
C-----------------------------------------------------------------------
C SCALE NEAR EXPONENT EXTREMES DURING RECURRENCE ON K FUNCTIONS
C-----------------------------------------------------------------------
CSCL = CMPLX(1.0E0/TOL,0.0E0)
CSCR = CMPLX(TOL,0.0E0)
CSS(1) = CSCL
CSS(2) = CONE
CSS(3) = CSCR
CSR(1) = CSCR
CSR(2) = CONE
CSR(3) = CSCL
BRY(1) = ASCLE
BRY(2) = 1.0E0/ASCLE
BRY(3) = R1MACH(2)
AS2 = ABS(S2)
KFLAG = 2
IF (AS2.GT.BRY(1)) GO TO 40
KFLAG = 1
GO TO 50
40 CONTINUE
IF (AS2.LT.BRY(2)) GO TO 50
KFLAG = 3
50 CONTINUE
BSCLE = BRY(KFLAG)
S1 = S1*CSS(KFLAG)
S2 = S2*CSS(KFLAG)
CS = CSR(KFLAG)
DO 70 I=3,N
ST = S2
S2 = CK*S2 + S1
S1 = ST
C1 = S2*CS
ST = C1
C2 = Y(I)
IF (KODE.EQ.1) GO TO 60
IF (IUF.LT.0) GO TO 60
CALL CS1S2(ZN, C1, C2, NW, ASCLE, ALIM, IUF)
NZ = NZ + NW
SC1 = SC2
SC2 = C1
IF (IUF.NE.3) GO TO 60
IUF = -4
S1 = SC1*CSS(KFLAG)
S2 = SC2*CSS(KFLAG)
ST = SC2
60 CONTINUE
Y(I) = CSPN*C1 + CSGN*C2
CK = CK + RZ
CSPN = -CSPN
IF (KFLAG.GE.3) GO TO 70
C1R = REAL(C1)
C1I = AIMAG(C1)
C1R = ABS(C1R)
C1I = ABS(C1I)
C1M = MAX(C1R,C1I)
IF (C1M.LE.BSCLE) GO TO 70
KFLAG = KFLAG + 1
BSCLE = BRY(KFLAG)
S1 = S1*CS
S2 = ST
S1 = S1*CSS(KFLAG)
S2 = S2*CSS(KFLAG)
CS = CSR(KFLAG)
70 CONTINUE
RETURN
80 CONTINUE
NZ = -1
IF(NW.EQ.(-2)) NZ=-2
RETURN
END