mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
208 lines
6.2 KiB
FortranFixed
208 lines
6.2 KiB
FortranFixed
|
*DECK CBAL
|
||
|
SUBROUTINE CBAL (NM, N, AR, AI, LOW, IGH, SCALE)
|
||
|
C***BEGIN PROLOGUE CBAL
|
||
|
C***PURPOSE Balance a complex general matrix and isolate eigenvalues
|
||
|
C whenever possible.
|
||
|
C***LIBRARY SLATEC (EISPACK)
|
||
|
C***CATEGORY D4C1A
|
||
|
C***TYPE COMPLEX (BALANC-S, CBAL-C)
|
||
|
C***KEYWORDS EIGENVECTORS, EISPACK
|
||
|
C***AUTHOR Smith, B. T., et al.
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This subroutine is a translation of the ALGOL procedure
|
||
|
C CBALANCE, which is a complex version of BALANCE,
|
||
|
C NUM. MATH. 13, 293-304(1969) by Parlett and Reinsch.
|
||
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971).
|
||
|
C
|
||
|
C This subroutine balances a COMPLEX matrix and isolates
|
||
|
C eigenvalues whenever possible.
|
||
|
C
|
||
|
C On INPUT
|
||
|
C
|
||
|
C NM must be set to the row dimension of the two-dimensional
|
||
|
C array parameters, AR and AI, as declared in the calling
|
||
|
C program dimension statement. NM is an INTEGER variable.
|
||
|
C
|
||
|
C N is the order of the matrix A=(AR,AI). N is an INTEGER
|
||
|
C variable. N must be less than or equal to NM.
|
||
|
C
|
||
|
C AR and AI contain the real and imaginary parts,
|
||
|
C respectively, of the complex matrix to be balanced.
|
||
|
C AR and AI are two-dimensional REAL arrays, dimensioned
|
||
|
C AR(NM,N) and AI(NM,N).
|
||
|
C
|
||
|
C On OUTPUT
|
||
|
C
|
||
|
C AR and AI contain the real and imaginary parts,
|
||
|
C respectively, of the balanced matrix.
|
||
|
C
|
||
|
C LOW and IGH are two INTEGER variables such that AR(I,J)
|
||
|
C and AI(I,J) are equal to zero if
|
||
|
C (1) I is greater than J and
|
||
|
C (2) J=1,...,LOW-1 or I=IGH+1,...,N.
|
||
|
C
|
||
|
C SCALE contains information determining the permutations and
|
||
|
C scaling factors used. SCALE is a one-dimensional REAL array,
|
||
|
C dimensioned SCALE(N).
|
||
|
C
|
||
|
C Suppose that the principal submatrix in rows LOW through IGH
|
||
|
C has been balanced, that P(J) denotes the index interchanged
|
||
|
C with J during the permutation step, and that the elements
|
||
|
C of the diagonal matrix used are denoted by D(I,J). Then
|
||
|
C SCALE(J) = P(J), for J = 1,...,LOW-1
|
||
|
C = D(J,J) J = LOW,...,IGH
|
||
|
C = P(J) J = IGH+1,...,N.
|
||
|
C The order in which the interchanges are made is N to IGH+1,
|
||
|
C then 1 to LOW-1.
|
||
|
C
|
||
|
C Note that 1 is returned for IGH if IGH is zero formally.
|
||
|
C
|
||
|
C The ALGOL procedure EXC contained in CBALANCE appears in
|
||
|
C CBAL in line. (Note that the ALGOL roles of identifiers
|
||
|
C K,L have been reversed.)
|
||
|
C
|
||
|
C Questions and comments should be directed to B. S. Garbow,
|
||
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
||
|
C ------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
||
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
||
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
||
|
C 1976.
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 760101 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE CBAL
|
||
|
C
|
||
|
INTEGER I,J,K,L,M,N,JJ,NM,IGH,LOW,IEXC
|
||
|
REAL AR(NM,*),AI(NM,*),SCALE(*)
|
||
|
REAL C,F,G,R,S,B2,RADIX
|
||
|
LOGICAL NOCONV
|
||
|
C
|
||
|
C THE FOLLOWING PORTABLE VALUE OF RADIX WORKS WELL ENOUGH
|
||
|
C FOR ALL MACHINES WHOSE BASE IS A POWER OF TWO.
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT CBAL
|
||
|
RADIX = 16
|
||
|
C
|
||
|
B2 = RADIX * RADIX
|
||
|
K = 1
|
||
|
L = N
|
||
|
GO TO 100
|
||
|
C .......... IN-LINE PROCEDURE FOR ROW AND
|
||
|
C COLUMN EXCHANGE ..........
|
||
|
20 SCALE(M) = J
|
||
|
IF (J .EQ. M) GO TO 50
|
||
|
C
|
||
|
DO 30 I = 1, L
|
||
|
F = AR(I,J)
|
||
|
AR(I,J) = AR(I,M)
|
||
|
AR(I,M) = F
|
||
|
F = AI(I,J)
|
||
|
AI(I,J) = AI(I,M)
|
||
|
AI(I,M) = F
|
||
|
30 CONTINUE
|
||
|
C
|
||
|
DO 40 I = K, N
|
||
|
F = AR(J,I)
|
||
|
AR(J,I) = AR(M,I)
|
||
|
AR(M,I) = F
|
||
|
F = AI(J,I)
|
||
|
AI(J,I) = AI(M,I)
|
||
|
AI(M,I) = F
|
||
|
40 CONTINUE
|
||
|
C
|
||
|
50 GO TO (80,130), IEXC
|
||
|
C .......... SEARCH FOR ROWS ISOLATING AN EIGENVALUE
|
||
|
C AND PUSH THEM DOWN ..........
|
||
|
80 IF (L .EQ. 1) GO TO 280
|
||
|
L = L - 1
|
||
|
C .......... FOR J=L STEP -1 UNTIL 1 DO -- ..........
|
||
|
100 DO 120 JJ = 1, L
|
||
|
J = L + 1 - JJ
|
||
|
C
|
||
|
DO 110 I = 1, L
|
||
|
IF (I .EQ. J) GO TO 110
|
||
|
IF (AR(J,I) .NE. 0.0E0 .OR. AI(J,I) .NE. 0.0E0) GO TO 120
|
||
|
110 CONTINUE
|
||
|
C
|
||
|
M = L
|
||
|
IEXC = 1
|
||
|
GO TO 20
|
||
|
120 CONTINUE
|
||
|
C
|
||
|
GO TO 140
|
||
|
C .......... SEARCH FOR COLUMNS ISOLATING AN EIGENVALUE
|
||
|
C AND PUSH THEM LEFT ..........
|
||
|
130 K = K + 1
|
||
|
C
|
||
|
140 DO 170 J = K, L
|
||
|
C
|
||
|
DO 150 I = K, L
|
||
|
IF (I .EQ. J) GO TO 150
|
||
|
IF (AR(I,J) .NE. 0.0E0 .OR. AI(I,J) .NE. 0.0E0) GO TO 170
|
||
|
150 CONTINUE
|
||
|
C
|
||
|
M = K
|
||
|
IEXC = 2
|
||
|
GO TO 20
|
||
|
170 CONTINUE
|
||
|
C .......... NOW BALANCE THE SUBMATRIX IN ROWS K TO L ..........
|
||
|
DO 180 I = K, L
|
||
|
180 SCALE(I) = 1.0E0
|
||
|
C .......... ITERATIVE LOOP FOR NORM REDUCTION ..........
|
||
|
190 NOCONV = .FALSE.
|
||
|
C
|
||
|
DO 270 I = K, L
|
||
|
C = 0.0E0
|
||
|
R = 0.0E0
|
||
|
C
|
||
|
DO 200 J = K, L
|
||
|
IF (J .EQ. I) GO TO 200
|
||
|
C = C + ABS(AR(J,I)) + ABS(AI(J,I))
|
||
|
R = R + ABS(AR(I,J)) + ABS(AI(I,J))
|
||
|
200 CONTINUE
|
||
|
C .......... GUARD AGAINST ZERO C OR R DUE TO UNDERFLOW ..........
|
||
|
IF (C .EQ. 0.0E0 .OR. R .EQ. 0.0E0) GO TO 270
|
||
|
G = R / RADIX
|
||
|
F = 1.0E0
|
||
|
S = C + R
|
||
|
210 IF (C .GE. G) GO TO 220
|
||
|
F = F * RADIX
|
||
|
C = C * B2
|
||
|
GO TO 210
|
||
|
220 G = R * RADIX
|
||
|
230 IF (C .LT. G) GO TO 240
|
||
|
F = F / RADIX
|
||
|
C = C / B2
|
||
|
GO TO 230
|
||
|
C .......... NOW BALANCE ..........
|
||
|
240 IF ((C + R) / F .GE. 0.95E0 * S) GO TO 270
|
||
|
G = 1.0E0 / F
|
||
|
SCALE(I) = SCALE(I) * F
|
||
|
NOCONV = .TRUE.
|
||
|
C
|
||
|
DO 250 J = K, N
|
||
|
AR(I,J) = AR(I,J) * G
|
||
|
AI(I,J) = AI(I,J) * G
|
||
|
250 CONTINUE
|
||
|
C
|
||
|
DO 260 J = 1, L
|
||
|
AR(J,I) = AR(J,I) * F
|
||
|
AI(J,I) = AI(J,I) * F
|
||
|
260 CONTINUE
|
||
|
C
|
||
|
270 CONTINUE
|
||
|
C
|
||
|
IF (NOCONV) GO TO 190
|
||
|
C
|
||
|
280 LOW = K
|
||
|
IGH = L
|
||
|
RETURN
|
||
|
END
|