mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
282 lines
12 KiB
FortranFixed
282 lines
12 KiB
FortranFixed
|
*DECK CBESK
|
||
|
SUBROUTINE CBESK (Z, FNU, KODE, N, CY, NZ, IERR)
|
||
|
C***BEGIN PROLOGUE CBESK
|
||
|
C***PURPOSE Compute a sequence of the Bessel functions K(a,z) for
|
||
|
C complex argument z and real nonnegative orders a=b,b+1,
|
||
|
C b+2,... where b>0. A scaling option is available to
|
||
|
C help avoid overflow.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY C10B4
|
||
|
C***TYPE COMPLEX (CBESK-C, ZBESK-C)
|
||
|
C***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT, K BESSEL FUNCTIONS,
|
||
|
C MODIFIED BESSEL FUNCTIONS
|
||
|
C***AUTHOR Amos, D. E., (SNL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C On KODE=1, CBESK computes an N member sequence of complex
|
||
|
C Bessel functions CY(L)=K(FNU+L-1,Z) for real nonnegative
|
||
|
C orders FNU+L-1, L=1,...,N and complex Z.NE.0 in the cut
|
||
|
C plane -pi<arg(Z)<=pi. On KODE=2, CBESJ returns the scaled
|
||
|
C functions
|
||
|
C
|
||
|
C CY(L) = exp(Z)*K(FNU+L-1,Z), L=1,...,N
|
||
|
C
|
||
|
C which remove the exponential growth in both the left and
|
||
|
C right half planes as Z goes to infinity. Definitions and
|
||
|
C notation are found in the NBS Handbook of Mathematical
|
||
|
C Functions (Ref. 1).
|
||
|
C
|
||
|
C Input
|
||
|
C Z - Nonzero argument of type COMPLEX
|
||
|
C FNU - Initial order of type REAL, FNU>=0
|
||
|
C KODE - A parameter to indicate the scaling option
|
||
|
C KODE=1 returns
|
||
|
C CY(L)=K(FNU+L-1,Z), L=1,...,N
|
||
|
C =2 returns
|
||
|
C CY(L)=K(FNU+L-1,Z)*EXP(Z), L=1,...,N
|
||
|
C N - Number of terms in the sequence, N>=1
|
||
|
C
|
||
|
C Output
|
||
|
C CY - Result vector of type COMPLEX
|
||
|
C NZ - Number of underflows set to zero
|
||
|
C NZ=0 Normal return
|
||
|
C NZ>0 CY(L)=0 for NZ values of L (if Re(Z)>0
|
||
|
C then CY(L)=0 for L=1,...,NZ; in the
|
||
|
C complementary half plane the underflows
|
||
|
C may not be in an uninterrupted sequence)
|
||
|
C IERR - Error flag
|
||
|
C IERR=0 Normal return - COMPUTATION COMPLETED
|
||
|
C IERR=1 Input error - NO COMPUTATION
|
||
|
C IERR=2 Overflow - NO COMPUTATION
|
||
|
C (abs(Z) too small and/or FNU+N-1
|
||
|
C too large)
|
||
|
C IERR=3 Precision warning - COMPUTATION COMPLETED
|
||
|
C (Result has half precision or less
|
||
|
C because abs(Z) or FNU+N-1 is large)
|
||
|
C IERR=4 Precision error - NO COMPUTATION
|
||
|
C (Result has no precision because
|
||
|
C abs(Z) or FNU+N-1 is too large)
|
||
|
C IERR=5 Algorithmic error - NO COMPUTATION
|
||
|
C (Termination condition not met)
|
||
|
C
|
||
|
C *Long Description:
|
||
|
C
|
||
|
C Equations of the reference are implemented to compute K(a,z)
|
||
|
C for small orders a and a+1 in the right half plane Re(z)>=0.
|
||
|
C Forward recurrence generates higher orders. The formula
|
||
|
C
|
||
|
C K(a,z*exp((t)) = exp(-t)*K(a,z) - t*I(a,z), Re(z)>0
|
||
|
C t = i*pi or -i*pi
|
||
|
C
|
||
|
C continues K to the left half plane.
|
||
|
C
|
||
|
C For large orders, K(a,z) is computed by means of its uniform
|
||
|
C asymptotic expansion.
|
||
|
C
|
||
|
C For negative orders, the formula
|
||
|
C
|
||
|
C K(-a,z) = K(a,z)
|
||
|
C
|
||
|
C can be used.
|
||
|
C
|
||
|
C CBESK assumes that a significant digit sinh function is
|
||
|
C available.
|
||
|
C
|
||
|
C In most complex variable computation, one must evaluate ele-
|
||
|
C mentary functions. When the magnitude of Z or FNU+N-1 is
|
||
|
C large, losses of significance by argument reduction occur.
|
||
|
C Consequently, if either one exceeds U1=SQRT(0.5/UR), then
|
||
|
C losses exceeding half precision are likely and an error flag
|
||
|
C IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF. Also,
|
||
|
C if either is larger than U2=0.5/UR, then all significance is
|
||
|
C lost and IERR=4. In order to use the INT function, arguments
|
||
|
C must be further restricted not to exceed the largest machine
|
||
|
C integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
|
||
|
C is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
|
||
|
C U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
|
||
|
C and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
|
||
|
C makes U2 limiting in single precision and U3 limiting in
|
||
|
C double precision. This means that one can expect to retain,
|
||
|
C in the worst cases on IEEE machines, no digits in single pre-
|
||
|
C cision and only 6 digits in double precision. Similar con-
|
||
|
C siderations hold for other machines.
|
||
|
C
|
||
|
C The approximate relative error in the magnitude of a complex
|
||
|
C Bessel function can be expressed as P*10**S where P=MAX(UNIT
|
||
|
C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
|
||
|
C sents the increase in error due to argument reduction in the
|
||
|
C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
|
||
|
C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
|
||
|
C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may
|
||
|
C have only absolute accuracy. This is most likely to occur
|
||
|
C when one component (in magnitude) is larger than the other by
|
||
|
C several orders of magnitude. If one component is 10**K larger
|
||
|
C than the other, then one can expect only MAX(ABS(LOG10(P))-K,
|
||
|
C 0) significant digits; or, stated another way, when K exceeds
|
||
|
C the exponent of P, no significant digits remain in the smaller
|
||
|
C component. However, the phase angle retains absolute accuracy
|
||
|
C because, in complex arithmetic with precision P, the smaller
|
||
|
C component will not (as a rule) decrease below P times the
|
||
|
C magnitude of the larger component. In these extreme cases,
|
||
|
C the principal phase angle is on the order of +P, -P, PI/2-P,
|
||
|
C or -PI/2+P.
|
||
|
C
|
||
|
C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
|
||
|
C matical Functions, National Bureau of Standards
|
||
|
C Applied Mathematics Series 55, U. S. Department
|
||
|
C of Commerce, Tenth Printing (1972) or later.
|
||
|
C 2. D. E. Amos, Computation of Bessel Functions of
|
||
|
C Complex Argument, Report SAND83-0086, Sandia National
|
||
|
C Laboratories, Albuquerque, NM, May 1983.
|
||
|
C 3. D. E. Amos, Computation of Bessel Functions of
|
||
|
C Complex Argument and Large Order, Report SAND83-0643,
|
||
|
C Sandia National Laboratories, Albuquerque, NM, May
|
||
|
C 1983.
|
||
|
C 4. D. E. Amos, A Subroutine Package for Bessel Functions
|
||
|
C of a Complex Argument and Nonnegative Order, Report
|
||
|
C SAND85-1018, Sandia National Laboratory, Albuquerque,
|
||
|
C NM, May 1985.
|
||
|
C 5. D. E. Amos, A portable package for Bessel functions
|
||
|
C of a complex argument and nonnegative order, ACM
|
||
|
C Transactions on Mathematical Software, 12 (September
|
||
|
C 1986), pp. 265-273.
|
||
|
C
|
||
|
C***ROUTINES CALLED CACON, CBKNU, CBUNK, CUOIK, I1MACH, R1MACH
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 830501 DATE WRITTEN
|
||
|
C 890801 REVISION DATE from Version 3.2
|
||
|
C 910415 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920128 Category corrected. (WRB)
|
||
|
C 920811 Prologue revised. (DWL)
|
||
|
C***END PROLOGUE CBESK
|
||
|
C
|
||
|
COMPLEX CY, Z
|
||
|
REAL AA, ALIM, ALN, ARG, AZ, DIG, ELIM, FN, FNU, FNUL, RL, R1M5,
|
||
|
* TOL, UFL, XX, YY, R1MACH, BB
|
||
|
INTEGER IERR, K, KODE, K1, K2, MR, N, NN, NUF, NW, NZ, I1MACH
|
||
|
DIMENSION CY(N)
|
||
|
C***FIRST EXECUTABLE STATEMENT CBESK
|
||
|
IERR = 0
|
||
|
NZ=0
|
||
|
XX = REAL(Z)
|
||
|
YY = AIMAG(Z)
|
||
|
IF (YY.EQ.0.0E0 .AND. XX.EQ.0.0E0) IERR=1
|
||
|
IF (FNU.LT.0.0E0) IERR=1
|
||
|
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
||
|
IF (N.LT.1) IERR=1
|
||
|
IF (IERR.NE.0) RETURN
|
||
|
NN = N
|
||
|
C-----------------------------------------------------------------------
|
||
|
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
|
||
|
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
|
||
|
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
|
||
|
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
|
||
|
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
|
||
|
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
|
||
|
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
|
||
|
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
|
||
|
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU
|
||
|
C-----------------------------------------------------------------------
|
||
|
TOL = MAX(R1MACH(4),1.0E-18)
|
||
|
K1 = I1MACH(12)
|
||
|
K2 = I1MACH(13)
|
||
|
R1M5 = R1MACH(5)
|
||
|
K = MIN(ABS(K1),ABS(K2))
|
||
|
ELIM = 2.303E0*(K*R1M5-3.0E0)
|
||
|
K1 = I1MACH(11) - 1
|
||
|
AA = R1M5*K1
|
||
|
DIG = MIN(AA,18.0E0)
|
||
|
AA = AA*2.303E0
|
||
|
ALIM = ELIM + MAX(-AA,-41.45E0)
|
||
|
FNUL = 10.0E0 + 6.0E0*(DIG-3.0E0)
|
||
|
RL = 1.2E0*DIG + 3.0E0
|
||
|
AZ = ABS(Z)
|
||
|
FN = FNU + (NN-1)
|
||
|
C-----------------------------------------------------------------------
|
||
|
C TEST FOR RANGE
|
||
|
C-----------------------------------------------------------------------
|
||
|
AA = 0.5E0/TOL
|
||
|
BB=I1MACH(9)*0.5E0
|
||
|
AA=MIN(AA,BB)
|
||
|
IF(AZ.GT.AA) GO TO 210
|
||
|
IF(FN.GT.AA) GO TO 210
|
||
|
AA=SQRT(AA)
|
||
|
IF(AZ.GT.AA) IERR=3
|
||
|
IF(FN.GT.AA) IERR=3
|
||
|
C-----------------------------------------------------------------------
|
||
|
C OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C UFL = EXP(-ELIM)
|
||
|
UFL = R1MACH(1)*1.0E+3
|
||
|
IF (AZ.LT.UFL) GO TO 180
|
||
|
IF (FNU.GT.FNUL) GO TO 80
|
||
|
IF (FN.LE.1.0E0) GO TO 60
|
||
|
IF (FN.GT.2.0E0) GO TO 50
|
||
|
IF (AZ.GT.TOL) GO TO 60
|
||
|
ARG = 0.5E0*AZ
|
||
|
ALN = -FN*ALOG(ARG)
|
||
|
IF (ALN.GT.ELIM) GO TO 180
|
||
|
GO TO 60
|
||
|
50 CONTINUE
|
||
|
CALL CUOIK(Z, FNU, KODE, 2, NN, CY, NUF, TOL, ELIM, ALIM)
|
||
|
IF (NUF.LT.0) GO TO 180
|
||
|
NZ = NZ + NUF
|
||
|
NN = NN - NUF
|
||
|
C-----------------------------------------------------------------------
|
||
|
C HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK
|
||
|
C IF NUF=NN, THEN CY(I)=CZERO FOR ALL I
|
||
|
C-----------------------------------------------------------------------
|
||
|
IF (NN.EQ.0) GO TO 100
|
||
|
60 CONTINUE
|
||
|
IF (XX.LT.0.0E0) GO TO 70
|
||
|
C-----------------------------------------------------------------------
|
||
|
C RIGHT HALF PLANE COMPUTATION, REAL(Z).GE.0.
|
||
|
C-----------------------------------------------------------------------
|
||
|
CALL CBKNU(Z, FNU, KODE, NN, CY, NW, TOL, ELIM, ALIM)
|
||
|
IF (NW.LT.0) GO TO 200
|
||
|
NZ=NW
|
||
|
RETURN
|
||
|
C-----------------------------------------------------------------------
|
||
|
C LEFT HALF PLANE COMPUTATION
|
||
|
C PI/2.LT.ARG(Z).LE.PI AND -PI.LT.ARG(Z).LT.-PI/2.
|
||
|
C-----------------------------------------------------------------------
|
||
|
70 CONTINUE
|
||
|
IF (NZ.NE.0) GO TO 180
|
||
|
MR = 1
|
||
|
IF (YY.LT.0.0E0) MR = -1
|
||
|
CALL CACON(Z, FNU, KODE, MR, NN, CY, NW, RL, FNUL, TOL, ELIM,
|
||
|
* ALIM)
|
||
|
IF (NW.LT.0) GO TO 200
|
||
|
NZ=NW
|
||
|
RETURN
|
||
|
C-----------------------------------------------------------------------
|
||
|
C UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL
|
||
|
C-----------------------------------------------------------------------
|
||
|
80 CONTINUE
|
||
|
MR = 0
|
||
|
IF (XX.GE.0.0E0) GO TO 90
|
||
|
MR = 1
|
||
|
IF (YY.LT.0.0E0) MR = -1
|
||
|
90 CONTINUE
|
||
|
CALL CBUNK(Z, FNU, KODE, MR, NN, CY, NW, TOL, ELIM, ALIM)
|
||
|
IF (NW.LT.0) GO TO 200
|
||
|
NZ = NZ + NW
|
||
|
RETURN
|
||
|
100 CONTINUE
|
||
|
IF (XX.LT.0.0E0) GO TO 180
|
||
|
RETURN
|
||
|
180 CONTINUE
|
||
|
NZ = 0
|
||
|
IERR=2
|
||
|
RETURN
|
||
|
200 CONTINUE
|
||
|
IF(NW.EQ.(-1)) GO TO 180
|
||
|
NZ=0
|
||
|
IERR=5
|
||
|
RETURN
|
||
|
210 CONTINUE
|
||
|
NZ=0
|
||
|
IERR=4
|
||
|
RETURN
|
||
|
END
|