OpenLibm/slatec/cexprl.f

54 lines
1.6 KiB
FortranFixed
Raw Normal View History

*DECK CEXPRL
COMPLEX FUNCTION CEXPRL (Z)
C***BEGIN PROLOGUE CEXPRL
C***PURPOSE Calculate the relative error exponential (EXP(X)-1)/X.
C***LIBRARY SLATEC (FNLIB)
C***CATEGORY C4B
C***TYPE COMPLEX (EXPREL-S, DEXPRL-D, CEXPRL-C)
C***KEYWORDS ELEMENTARY FUNCTIONS, EXPONENTIAL, FIRST ORDER, FNLIB
C***AUTHOR Fullerton, W., (LANL)
C***DESCRIPTION
C
C Evaluate (EXP(Z)-1)/Z . For small ABS(Z), we use the Taylor
C series. We could instead use the expression
C CEXPRL(Z) = (EXP(X)*EXP(I*Y)-1)/Z
C = (X*EXPREL(X) * (1 - 2*SIN(Y/2)**2) - 2*SIN(Y/2)**2
C + I*SIN(Y)*(1+X*EXPREL(X))) / Z
C
C***REFERENCES (NONE)
C***ROUTINES CALLED R1MACH
C***REVISION HISTORY (YYMMDD)
C 770801 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C***END PROLOGUE CEXPRL
COMPLEX Z
LOGICAL FIRST
SAVE NTERMS, RBND, FIRST
DATA FIRST / .TRUE. /
C***FIRST EXECUTABLE STATEMENT CEXPRL
IF (FIRST) THEN
ALNEPS = LOG(R1MACH(3))
XN = 3.72 - 0.3*ALNEPS
XLN = LOG((XN+1.0)/1.36)
NTERMS = XN - (XN*XLN+ALNEPS)/(XLN+1.36) + 1.5
RBND = R1MACH(3)
ENDIF
FIRST = .FALSE.
C
R = ABS(Z)
IF (R.GT.0.5) CEXPRL = (EXP(Z) - 1.0) / Z
IF (R.GT.0.5) RETURN
C
CEXPRL = (1.0, 0.0)
IF (R.LT.RBND) RETURN
C
CEXPRL = (0.0, 0.0)
DO 20 I=1,NTERMS
CEXPRL = 1.0 + CEXPRL*Z/(NTERMS+2-I)
20 CONTINUE
C
RETURN
END