mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
134 lines
4.6 KiB
FortranFixed
134 lines
4.6 KiB
FortranFixed
|
*DECK CFFTF1
|
||
|
SUBROUTINE CFFTF1 (N, C, CH, WA, IFAC)
|
||
|
C***BEGIN PROLOGUE CFFTF1
|
||
|
C***PURPOSE Compute the forward transform of a complex, periodic
|
||
|
C sequence.
|
||
|
C***LIBRARY SLATEC (FFTPACK)
|
||
|
C***CATEGORY J1A2
|
||
|
C***TYPE COMPLEX (RFFTF1-S, CFFTF1-C)
|
||
|
C***KEYWORDS FFTPACK, FOURIER TRANSFORM
|
||
|
C***AUTHOR Swarztrauber, P. N., (NCAR)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Subroutine CFFTF1 computes the forward complex discrete Fourier
|
||
|
C transform (the Fourier analysis). Equivalently, CFFTF1 computes
|
||
|
C the Fourier coefficients of a complex periodic sequence.
|
||
|
C The transform is defined below at output parameter C.
|
||
|
C
|
||
|
C The transform is not normalized. To obtain a normalized transform
|
||
|
C the output must be divided by N. Otherwise a call of CFFTF1
|
||
|
C followed by a call of CFFTB1 will multiply the sequence by N.
|
||
|
C
|
||
|
C The arrays WA and IFAC which are used by subroutine CFFTB1 must be
|
||
|
C initialized by calling subroutine CFFTI1 (N, WA, IFAC).
|
||
|
C
|
||
|
C Input Parameters
|
||
|
C
|
||
|
C N the length of the complex sequence C. The method is
|
||
|
C more efficient when N is the product of small primes.
|
||
|
C
|
||
|
C C a complex array of length N which contains the sequence
|
||
|
C
|
||
|
C CH a real work array of length at least 2*N
|
||
|
C
|
||
|
C WA a real work array which must be dimensioned at least 2*N.
|
||
|
C
|
||
|
C IFAC an integer work array which must be dimensioned at least 15.
|
||
|
C
|
||
|
C The WA and IFAC arrays must be initialized by calling
|
||
|
C subroutine CFFTI1 (N, WA, IFAC), and different WA and IFAC
|
||
|
C arrays must be used for each different value of N. This
|
||
|
C initialization does not have to be repeated so long as N
|
||
|
C remains unchanged. Thus subsequent transforms can be
|
||
|
C obtained faster than the first. The same WA and IFAC arrays
|
||
|
C can be used by CFFTF1 and CFFTB1.
|
||
|
C
|
||
|
C Output Parameters
|
||
|
C
|
||
|
C C For J=1,...,N
|
||
|
C
|
||
|
C C(J)=the sum from K=1,...,N of
|
||
|
C
|
||
|
C C(K)*EXP(-I*(J-1)*(K-1)*2*PI/N)
|
||
|
C
|
||
|
C where I=SQRT(-1)
|
||
|
C
|
||
|
C NOTE: WA and IFAC contain initialization calculations which must
|
||
|
C not be destroyed between calls of subroutine CFFTF1 or CFFTB1
|
||
|
C
|
||
|
C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
|
||
|
C Computations (G. Rodrigue, ed.), Academic Press,
|
||
|
C 1982, pp. 51-83.
|
||
|
C***ROUTINES CALLED PASSF, PASSF2, PASSF3, PASSF4, PASSF5
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 790601 DATE WRITTEN
|
||
|
C 830401 Modified to use SLATEC library source file format.
|
||
|
C 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
|
||
|
C changing dummy array size declarations (1) to (*).
|
||
|
C 881128 Modified by Dick Valent to meet prologue standards.
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900131 Routine changed from subsidiary to user-callable. (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE CFFTF1
|
||
|
DIMENSION CH(*), C(*), WA(*), IFAC(*)
|
||
|
C***FIRST EXECUTABLE STATEMENT CFFTF1
|
||
|
NF = IFAC(2)
|
||
|
NA = 0
|
||
|
L1 = 1
|
||
|
IW = 1
|
||
|
DO 116 K1=1,NF
|
||
|
IP = IFAC(K1+2)
|
||
|
L2 = IP*L1
|
||
|
IDO = N/L2
|
||
|
IDOT = IDO+IDO
|
||
|
IDL1 = IDOT*L1
|
||
|
IF (IP .NE. 4) GO TO 103
|
||
|
IX2 = IW+IDOT
|
||
|
IX3 = IX2+IDOT
|
||
|
IF (NA .NE. 0) GO TO 101
|
||
|
CALL PASSF4 (IDOT,L1,C,CH,WA(IW),WA(IX2),WA(IX3))
|
||
|
GO TO 102
|
||
|
101 CALL PASSF4 (IDOT,L1,CH,C,WA(IW),WA(IX2),WA(IX3))
|
||
|
102 NA = 1-NA
|
||
|
GO TO 115
|
||
|
103 IF (IP .NE. 2) GO TO 106
|
||
|
IF (NA .NE. 0) GO TO 104
|
||
|
CALL PASSF2 (IDOT,L1,C,CH,WA(IW))
|
||
|
GO TO 105
|
||
|
104 CALL PASSF2 (IDOT,L1,CH,C,WA(IW))
|
||
|
105 NA = 1-NA
|
||
|
GO TO 115
|
||
|
106 IF (IP .NE. 3) GO TO 109
|
||
|
IX2 = IW+IDOT
|
||
|
IF (NA .NE. 0) GO TO 107
|
||
|
CALL PASSF3 (IDOT,L1,C,CH,WA(IW),WA(IX2))
|
||
|
GO TO 108
|
||
|
107 CALL PASSF3 (IDOT,L1,CH,C,WA(IW),WA(IX2))
|
||
|
108 NA = 1-NA
|
||
|
GO TO 115
|
||
|
109 IF (IP .NE. 5) GO TO 112
|
||
|
IX2 = IW+IDOT
|
||
|
IX3 = IX2+IDOT
|
||
|
IX4 = IX3+IDOT
|
||
|
IF (NA .NE. 0) GO TO 110
|
||
|
CALL PASSF5 (IDOT,L1,C,CH,WA(IW),WA(IX2),WA(IX3),WA(IX4))
|
||
|
GO TO 111
|
||
|
110 CALL PASSF5 (IDOT,L1,CH,C,WA(IW),WA(IX2),WA(IX3),WA(IX4))
|
||
|
111 NA = 1-NA
|
||
|
GO TO 115
|
||
|
112 IF (NA .NE. 0) GO TO 113
|
||
|
CALL PASSF (NAC,IDOT,IP,L1,IDL1,C,C,C,CH,CH,WA(IW))
|
||
|
GO TO 114
|
||
|
113 CALL PASSF (NAC,IDOT,IP,L1,IDL1,CH,CH,CH,C,C,WA(IW))
|
||
|
114 IF (NAC .NE. 0) NA = 1-NA
|
||
|
115 L1 = L2
|
||
|
IW = IW+(IP-1)*IDOT
|
||
|
116 CONTINUE
|
||
|
IF (NA .EQ. 0) RETURN
|
||
|
N2 = N+N
|
||
|
DO 117 I=1,N2
|
||
|
C(I) = CH(I)
|
||
|
117 CONTINUE
|
||
|
RETURN
|
||
|
END
|