OpenLibm/slatec/cgemm.f

422 lines
13 KiB
FortranFixed
Raw Normal View History

*DECK CGEMM
SUBROUTINE CGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
$ BETA, C, LDC)
C***BEGIN PROLOGUE CGEMM
C***PURPOSE Multiply a complex general matrix by a complex general
C matrix.
C***LIBRARY SLATEC (BLAS)
C***CATEGORY D1B6
C***TYPE COMPLEX (SGEMM-S, DGEMM-D, CGEMM-C)
C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
C***AUTHOR Dongarra, J., (ANL)
C Duff, I., (AERE)
C Du Croz, J., (NAG)
C Hammarling, S. (NAG)
C***DESCRIPTION
C
C CGEMM performs one of the matrix-matrix operations
C
C C := alpha*op( A )*op( B ) + beta*C,
C
C where op( X ) is one of
C
C op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
C
C alpha and beta are scalars, and A, B and C are matrices, with op( A )
C an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
C
C Parameters
C ==========
C
C TRANSA - CHARACTER*1.
C On entry, TRANSA specifies the form of op( A ) to be used in
C the matrix multiplication as follows:
C
C TRANSA = 'N' or 'n', op( A ) = A.
C
C TRANSA = 'T' or 't', op( A ) = A'.
C
C TRANSA = 'C' or 'c', op( A ) = conjg( A' ).
C
C Unchanged on exit.
C
C TRANSB - CHARACTER*1.
C On entry, TRANSB specifies the form of op( B ) to be used in
C the matrix multiplication as follows:
C
C TRANSB = 'N' or 'n', op( B ) = B.
C
C TRANSB = 'T' or 't', op( B ) = B'.
C
C TRANSB = 'C' or 'c', op( B ) = conjg( B' ).
C
C Unchanged on exit.
C
C M - INTEGER.
C On entry, M specifies the number of rows of the matrix
C op( A ) and of the matrix C. M must be at least zero.
C Unchanged on exit.
C
C N - INTEGER.
C On entry, N specifies the number of columns of the matrix
C op( B ) and the number of columns of the matrix C. N must be
C at least zero.
C Unchanged on exit.
C
C K - INTEGER.
C On entry, K specifies the number of columns of the matrix
C op( A ) and the number of rows of the matrix op( B ). K must
C be at least zero.
C Unchanged on exit.
C
C ALPHA - COMPLEX .
C On entry, ALPHA specifies the scalar alpha.
C Unchanged on exit.
C
C A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
C k when TRANSA = 'N' or 'n', and is m otherwise.
C Before entry with TRANSA = 'N' or 'n', the leading m by k
C part of the array A must contain the matrix A, otherwise
C the leading k by m part of the array A must contain the
C matrix A.
C Unchanged on exit.
C
C LDA - INTEGER.
C On entry, LDA specifies the first dimension of A as declared
C in the calling (sub) program. When TRANSA = 'N' or 'n' then
C LDA must be at least max( 1, m ), otherwise LDA must be at
C least max( 1, k ).
C Unchanged on exit.
C
C B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
C n when TRANSB = 'N' or 'n', and is k otherwise.
C Before entry with TRANSB = 'N' or 'n', the leading k by n
C part of the array B must contain the matrix B, otherwise
C the leading n by k part of the array B must contain the
C matrix B.
C Unchanged on exit.
C
C LDB - INTEGER.
C On entry, LDB specifies the first dimension of B as declared
C in the calling (sub) program. When TRANSB = 'N' or 'n' then
C LDB must be at least max( 1, k ), otherwise LDB must be at
C least max( 1, n ).
C Unchanged on exit.
C
C BETA - COMPLEX .
C On entry, BETA specifies the scalar beta. When BETA is
C supplied as zero then C need not be set on input.
C Unchanged on exit.
C
C C - COMPLEX array of DIMENSION ( LDC, n ).
C Before entry, the leading m by n part of the array C must
C contain the matrix C, except when beta is zero, in which
C case C need not be set on entry.
C On exit, the array C is overwritten by the m by n matrix
C ( alpha*op( A )*op( B ) + beta*C ).
C
C LDC - INTEGER.
C On entry, LDC specifies the first dimension of C as declared
C in the calling (sub) program. LDC must be at least
C max( 1, m ).
C Unchanged on exit.
C
C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
C A set of level 3 basic linear algebra subprograms.
C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
C***ROUTINES CALLED LSAME, XERBLA
C***REVISION HISTORY (YYMMDD)
C 890208 DATE WRITTEN
C 910605 Modified to meet SLATEC prologue standards. Only comment
C lines were modified. (BKS)
C***END PROLOGUE CGEMM
C .. Scalar Arguments ..
CHARACTER*1 TRANSA, TRANSB
INTEGER M, N, K, LDA, LDB, LDC
COMPLEX ALPHA, BETA
C .. Array Arguments ..
COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * )
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL XERBLA
C .. Intrinsic Functions ..
INTRINSIC CONJG, MAX
C .. Local Scalars ..
LOGICAL CONJA, CONJB, NOTA, NOTB
INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB
COMPLEX TEMP
C .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
C***FIRST EXECUTABLE STATEMENT CGEMM
C
C Set NOTA and NOTB as true if A and B respectively are not
C conjugated or transposed, set CONJA and CONJB as true if A and
C B respectively are to be transposed but not conjugated and set
C NROWA, NCOLA and NROWB as the number of rows and columns of A
C and the number of rows of B respectively.
C
NOTA = LSAME( TRANSA, 'N' )
NOTB = LSAME( TRANSB, 'N' )
CONJA = LSAME( TRANSA, 'C' )
CONJB = LSAME( TRANSB, 'C' )
IF( NOTA )THEN
NROWA = M
NCOLA = K
ELSE
NROWA = K
NCOLA = M
END IF
IF( NOTB )THEN
NROWB = K
ELSE
NROWB = N
END IF
C
C Test the input parameters.
C
INFO = 0
IF( ( .NOT.NOTA ).AND.
$ ( .NOT.CONJA ).AND.
$ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN
INFO = 1
ELSE IF( ( .NOT.NOTB ).AND.
$ ( .NOT.CONJB ).AND.
$ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN
INFO = 2
ELSE IF( M .LT.0 )THEN
INFO = 3
ELSE IF( N .LT.0 )THEN
INFO = 4
ELSE IF( K .LT.0 )THEN
INFO = 5
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
INFO = 8
ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN
INFO = 10
ELSE IF( LDC.LT.MAX( 1, M ) )THEN
INFO = 13
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'CGEMM ', INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
$ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
$ RETURN
C
C And when alpha.eq.zero.
C
IF( ALPHA.EQ.ZERO )THEN
IF( BETA.EQ.ZERO )THEN
DO 20, J = 1, N
DO 10, I = 1, M
C( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40, J = 1, N
DO 30, I = 1, M
C( I, J ) = BETA*C( I, J )
30 CONTINUE
40 CONTINUE
END IF
RETURN
END IF
C
C Start the operations.
C
IF( NOTB )THEN
IF( NOTA )THEN
C
C Form C := alpha*A*B + beta*C.
C
DO 90, J = 1, N
IF( BETA.EQ.ZERO )THEN
DO 50, I = 1, M
C( I, J ) = ZERO
50 CONTINUE
ELSE IF( BETA.NE.ONE )THEN
DO 60, I = 1, M
C( I, J ) = BETA*C( I, J )
60 CONTINUE
END IF
DO 80, L = 1, K
IF( B( L, J ).NE.ZERO )THEN
TEMP = ALPHA*B( L, J )
DO 70, I = 1, M
C( I, J ) = C( I, J ) + TEMP*A( I, L )
70 CONTINUE
END IF
80 CONTINUE
90 CONTINUE
ELSE IF( CONJA )THEN
C
C Form C := alpha*conjg( A' )*B + beta*C.
C
DO 120, J = 1, N
DO 110, I = 1, M
TEMP = ZERO
DO 100, L = 1, K
TEMP = TEMP + CONJG( A( L, I ) )*B( L, J )
100 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = ALPHA*TEMP
ELSE
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
END IF
110 CONTINUE
120 CONTINUE
ELSE
C
C Form C := alpha*A'*B + beta*C
C
DO 150, J = 1, N
DO 140, I = 1, M
TEMP = ZERO
DO 130, L = 1, K
TEMP = TEMP + A( L, I )*B( L, J )
130 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = ALPHA*TEMP
ELSE
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
END IF
140 CONTINUE
150 CONTINUE
END IF
ELSE IF( NOTA )THEN
IF( CONJB )THEN
C
C Form C := alpha*A*conjg( B' ) + beta*C.
C
DO 200, J = 1, N
IF( BETA.EQ.ZERO )THEN
DO 160, I = 1, M
C( I, J ) = ZERO
160 CONTINUE
ELSE IF( BETA.NE.ONE )THEN
DO 170, I = 1, M
C( I, J ) = BETA*C( I, J )
170 CONTINUE
END IF
DO 190, L = 1, K
IF( B( J, L ).NE.ZERO )THEN
TEMP = ALPHA*CONJG( B( J, L ) )
DO 180, I = 1, M
C( I, J ) = C( I, J ) + TEMP*A( I, L )
180 CONTINUE
END IF
190 CONTINUE
200 CONTINUE
ELSE
C
C Form C := alpha*A*B' + beta*C
C
DO 250, J = 1, N
IF( BETA.EQ.ZERO )THEN
DO 210, I = 1, M
C( I, J ) = ZERO
210 CONTINUE
ELSE IF( BETA.NE.ONE )THEN
DO 220, I = 1, M
C( I, J ) = BETA*C( I, J )
220 CONTINUE
END IF
DO 240, L = 1, K
IF( B( J, L ).NE.ZERO )THEN
TEMP = ALPHA*B( J, L )
DO 230, I = 1, M
C( I, J ) = C( I, J ) + TEMP*A( I, L )
230 CONTINUE
END IF
240 CONTINUE
250 CONTINUE
END IF
ELSE IF( CONJA )THEN
IF( CONJB )THEN
C
C Form C := alpha*conjg( A' )*conjg( B' ) + beta*C.
C
DO 280, J = 1, N
DO 270, I = 1, M
TEMP = ZERO
DO 260, L = 1, K
TEMP = TEMP + CONJG( A( L, I ) )*CONJG( B( J, L ) )
260 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = ALPHA*TEMP
ELSE
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
END IF
270 CONTINUE
280 CONTINUE
ELSE
C
C Form C := alpha*conjg( A' )*B' + beta*C
C
DO 310, J = 1, N
DO 300, I = 1, M
TEMP = ZERO
DO 290, L = 1, K
TEMP = TEMP + CONJG( A( L, I ) )*B( J, L )
290 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = ALPHA*TEMP
ELSE
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
END IF
300 CONTINUE
310 CONTINUE
END IF
ELSE
IF( CONJB )THEN
C
C Form C := alpha*A'*conjg( B' ) + beta*C
C
DO 340, J = 1, N
DO 330, I = 1, M
TEMP = ZERO
DO 320, L = 1, K
TEMP = TEMP + A( L, I )*CONJG( B( J, L ) )
320 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = ALPHA*TEMP
ELSE
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
END IF
330 CONTINUE
340 CONTINUE
ELSE
C
C Form C := alpha*A'*B' + beta*C
C
DO 370, J = 1, N
DO 360, I = 1, M
TEMP = ZERO
DO 350, L = 1, K
TEMP = TEMP + A( L, I )*B( J, L )
350 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = ALPHA*TEMP
ELSE
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
END IF
360 CONTINUE
370 CONTINUE
END IF
END IF
C
RETURN
C
C End of CGEMM .
C
END