mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
273 lines
8.7 KiB
FortranFixed
273 lines
8.7 KiB
FortranFixed
|
*DECK CHEMV
|
||
|
SUBROUTINE CHEMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
|
||
|
C***BEGIN PROLOGUE CHEMV
|
||
|
C***PURPOSE Multiply a complex vector by a complex Hermitian matrix.
|
||
|
C***LIBRARY SLATEC (BLAS)
|
||
|
C***CATEGORY D1B4
|
||
|
C***TYPE COMPLEX (SHEMV-S, DHEMV-D, CHEMV-C)
|
||
|
C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
|
||
|
C***AUTHOR Dongarra, J. J., (ANL)
|
||
|
C Du Croz, J., (NAG)
|
||
|
C Hammarling, S., (NAG)
|
||
|
C Hanson, R. J., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C CHEMV performs the matrix-vector operation
|
||
|
C
|
||
|
C y := alpha*A*x + beta*y,
|
||
|
C
|
||
|
C where alpha and beta are scalars, x and y are n element vectors and
|
||
|
C A is an n by n hermitian matrix.
|
||
|
C
|
||
|
C Parameters
|
||
|
C ==========
|
||
|
C
|
||
|
C UPLO - CHARACTER*1.
|
||
|
C On entry, UPLO specifies whether the upper or lower
|
||
|
C triangular part of the array A is to be referenced as
|
||
|
C follows:
|
||
|
C
|
||
|
C UPLO = 'U' or 'u' Only the upper triangular part of A
|
||
|
C is to be referenced.
|
||
|
C
|
||
|
C UPLO = 'L' or 'l' Only the lower triangular part of A
|
||
|
C is to be referenced.
|
||
|
C
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C N - INTEGER.
|
||
|
C On entry, N specifies the order of the matrix A.
|
||
|
C N must be at least zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C ALPHA - COMPLEX .
|
||
|
C On entry, ALPHA specifies the scalar alpha.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C A - COMPLEX array of DIMENSION ( LDA, n ).
|
||
|
C Before entry with UPLO = 'U' or 'u', the leading n by n
|
||
|
C upper triangular part of the array A must contain the upper
|
||
|
C triangular part of the hermitian matrix and the strictly
|
||
|
C lower triangular part of A is not referenced.
|
||
|
C Before entry with UPLO = 'L' or 'l', the leading n by n
|
||
|
C lower triangular part of the array A must contain the lower
|
||
|
C triangular part of the hermitian matrix and the strictly
|
||
|
C upper triangular part of A is not referenced.
|
||
|
C Note that the imaginary parts of the diagonal elements need
|
||
|
C not be set and are assumed to be zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C LDA - INTEGER.
|
||
|
C On entry, LDA specifies the first dimension of A as declared
|
||
|
C in the calling (sub) program. LDA must be at least
|
||
|
C max( 1, n ).
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C X - COMPLEX array of dimension at least
|
||
|
C ( 1 + ( n - 1 )*abs( INCX ) ).
|
||
|
C Before entry, the incremented array X must contain the n
|
||
|
C element vector x.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C INCX - INTEGER.
|
||
|
C On entry, INCX specifies the increment for the elements of
|
||
|
C X. INCX must not be zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C BETA - COMPLEX .
|
||
|
C On entry, BETA specifies the scalar beta. When BETA is
|
||
|
C supplied as zero then Y need not be set on input.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C Y - COMPLEX array of dimension at least
|
||
|
C ( 1 + ( n - 1 )*abs( INCY ) ).
|
||
|
C Before entry, the incremented array Y must contain the n
|
||
|
C element vector y. On exit, Y is overwritten by the updated
|
||
|
C vector y.
|
||
|
C
|
||
|
C INCY - INTEGER.
|
||
|
C On entry, INCY specifies the increment for the elements of
|
||
|
C Y. INCY must not be zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
|
||
|
C Hanson, R. J. An extended set of Fortran basic linear
|
||
|
C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
|
||
|
C pp. 1-17, March 1988.
|
||
|
C***ROUTINES CALLED LSAME, XERBLA
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 861022 DATE WRITTEN
|
||
|
C 910605 Modified to meet SLATEC prologue standards. Only comment
|
||
|
C lines were modified. (BKS)
|
||
|
C***END PROLOGUE CHEMV
|
||
|
C .. Scalar Arguments ..
|
||
|
COMPLEX ALPHA, BETA
|
||
|
INTEGER INCX, INCY, LDA, N
|
||
|
CHARACTER*1 UPLO
|
||
|
C .. Array Arguments ..
|
||
|
COMPLEX A( LDA, * ), X( * ), Y( * )
|
||
|
C .. Parameters ..
|
||
|
COMPLEX ONE
|
||
|
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
|
||
|
COMPLEX ZERO
|
||
|
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
|
||
|
C .. Local Scalars ..
|
||
|
COMPLEX TEMP1, TEMP2
|
||
|
INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
|
||
|
C .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
C .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
C .. Intrinsic Functions ..
|
||
|
INTRINSIC CONJG, MAX, REAL
|
||
|
C***FIRST EXECUTABLE STATEMENT CHEMV
|
||
|
C
|
||
|
C Test the input parameters.
|
||
|
C
|
||
|
INFO = 0
|
||
|
IF ( .NOT.LSAME( UPLO, 'U' ).AND.
|
||
|
$ .NOT.LSAME( UPLO, 'L' ) )THEN
|
||
|
INFO = 1
|
||
|
ELSE IF( N.LT.0 )THEN
|
||
|
INFO = 2
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) )THEN
|
||
|
INFO = 5
|
||
|
ELSE IF( INCX.EQ.0 )THEN
|
||
|
INFO = 7
|
||
|
ELSE IF( INCY.EQ.0 )THEN
|
||
|
INFO = 10
|
||
|
END IF
|
||
|
IF( INFO.NE.0 )THEN
|
||
|
CALL XERBLA( 'CHEMV ', INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
C
|
||
|
C Quick return if possible.
|
||
|
C
|
||
|
IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
|
||
|
$ RETURN
|
||
|
C
|
||
|
C Set up the start points in X and Y.
|
||
|
C
|
||
|
IF( INCX.GT.0 )THEN
|
||
|
KX = 1
|
||
|
ELSE
|
||
|
KX = 1 - ( N - 1 )*INCX
|
||
|
END IF
|
||
|
IF( INCY.GT.0 )THEN
|
||
|
KY = 1
|
||
|
ELSE
|
||
|
KY = 1 - ( N - 1 )*INCY
|
||
|
END IF
|
||
|
C
|
||
|
C Start the operations. In this version the elements of A are
|
||
|
C accessed sequentially with one pass through the triangular part
|
||
|
C of A.
|
||
|
C
|
||
|
C First form y := beta*y.
|
||
|
C
|
||
|
IF( BETA.NE.ONE )THEN
|
||
|
IF( INCY.EQ.1 )THEN
|
||
|
IF( BETA.EQ.ZERO )THEN
|
||
|
DO 10, I = 1, N
|
||
|
Y( I ) = ZERO
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
DO 20, I = 1, N
|
||
|
Y( I ) = BETA*Y( I )
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
IY = KY
|
||
|
IF( BETA.EQ.ZERO )THEN
|
||
|
DO 30, I = 1, N
|
||
|
Y( IY ) = ZERO
|
||
|
IY = IY + INCY
|
||
|
30 CONTINUE
|
||
|
ELSE
|
||
|
DO 40, I = 1, N
|
||
|
Y( IY ) = BETA*Y( IY )
|
||
|
IY = IY + INCY
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( ALPHA.EQ.ZERO )
|
||
|
$ RETURN
|
||
|
IF( LSAME( UPLO, 'U' ) )THEN
|
||
|
C
|
||
|
C Form y when A is stored in upper triangle.
|
||
|
C
|
||
|
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
|
||
|
DO 60, J = 1, N
|
||
|
TEMP1 = ALPHA*X( J )
|
||
|
TEMP2 = ZERO
|
||
|
DO 50, I = 1, J - 1
|
||
|
Y( I ) = Y( I ) + TEMP1*A( I, J )
|
||
|
TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( I )
|
||
|
50 CONTINUE
|
||
|
Y( J ) = Y( J ) + TEMP1*REAL( A( J, J ) ) + ALPHA*TEMP2
|
||
|
60 CONTINUE
|
||
|
ELSE
|
||
|
JX = KX
|
||
|
JY = KY
|
||
|
DO 80, J = 1, N
|
||
|
TEMP1 = ALPHA*X( JX )
|
||
|
TEMP2 = ZERO
|
||
|
IX = KX
|
||
|
IY = KY
|
||
|
DO 70, I = 1, J - 1
|
||
|
Y( IY ) = Y( IY ) + TEMP1*A( I, J )
|
||
|
TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( IX )
|
||
|
IX = IX + INCX
|
||
|
IY = IY + INCY
|
||
|
70 CONTINUE
|
||
|
Y( JY ) = Y( JY ) + TEMP1*REAL( A( J, J ) ) + ALPHA*TEMP2
|
||
|
JX = JX + INCX
|
||
|
JY = JY + INCY
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
C
|
||
|
C Form y when A is stored in lower triangle.
|
||
|
C
|
||
|
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
|
||
|
DO 100, J = 1, N
|
||
|
TEMP1 = ALPHA*X( J )
|
||
|
TEMP2 = ZERO
|
||
|
Y( J ) = Y( J ) + TEMP1*REAL( A( J, J ) )
|
||
|
DO 90, I = J + 1, N
|
||
|
Y( I ) = Y( I ) + TEMP1*A( I, J )
|
||
|
TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( I )
|
||
|
90 CONTINUE
|
||
|
Y( J ) = Y( J ) + ALPHA*TEMP2
|
||
|
100 CONTINUE
|
||
|
ELSE
|
||
|
JX = KX
|
||
|
JY = KY
|
||
|
DO 120, J = 1, N
|
||
|
TEMP1 = ALPHA*X( JX )
|
||
|
TEMP2 = ZERO
|
||
|
Y( JY ) = Y( JY ) + TEMP1*REAL( A( J, J ) )
|
||
|
IX = JX
|
||
|
IY = JY
|
||
|
DO 110, I = J + 1, N
|
||
|
IX = IX + INCX
|
||
|
IY = IY + INCY
|
||
|
Y( IY ) = Y( IY ) + TEMP1*A( I, J )
|
||
|
TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( IX )
|
||
|
110 CONTINUE
|
||
|
Y( JY ) = Y( JY ) + ALPHA*TEMP2
|
||
|
JX = JX + INCX
|
||
|
JY = JY + INCY
|
||
|
120 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
C
|
||
|
RETURN
|
||
|
C
|
||
|
C End of CHEMV .
|
||
|
C
|
||
|
END
|