OpenLibm/slatec/cherk.f

328 lines
11 KiB
FortranFixed
Raw Normal View History

*DECK CHERK
SUBROUTINE CHERK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
C***BEGIN PROLOGUE CHERK
C***PURPOSE Perform Hermitian rank k update of a complex Hermitian
C matrix.
C***LIBRARY SLATEC (BLAS)
C***CATEGORY D1B6
C***TYPE COMPLEX (SHERK-S, DHERK-D, CHERK-C)
C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
C***AUTHOR Dongarra, J., (ANL)
C Duff, I., (AERE)
C Du Croz, J., (NAG)
C Hammarling, S. (NAG)
C***DESCRIPTION
C
C CHERK performs one of the hermitian rank k operations
C
C C := alpha*A*conjg( A' ) + beta*C,
C
C or
C
C C := alpha*conjg( A' )*A + beta*C,
C
C where alpha and beta are real scalars, C is an n by n hermitian
C matrix and A is an n by k matrix in the first case and a k by n
C matrix in the second case.
C
C Parameters
C ==========
C
C UPLO - CHARACTER*1.
C On entry, UPLO specifies whether the upper or lower
C triangular part of the array C is to be referenced as
C follows:
C
C UPLO = 'U' or 'u' Only the upper triangular part of C
C is to be referenced.
C
C UPLO = 'L' or 'l' Only the lower triangular part of C
C is to be referenced.
C
C Unchanged on exit.
C
C TRANS - CHARACTER*1.
C On entry, TRANS specifies the operation to be performed as
C follows:
C
C TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C.
C
C TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C.
C
C Unchanged on exit.
C
C N - INTEGER.
C On entry, N specifies the order of the matrix C. N must be
C at least zero.
C Unchanged on exit.
C
C K - INTEGER.
C On entry with TRANS = 'N' or 'n', K specifies the number
C of columns of the matrix A, and on entry with
C TRANS = 'C' or 'c', K specifies the number of rows of the
C matrix A. K must be at least zero.
C Unchanged on exit.
C
C ALPHA - REAL .
C On entry, ALPHA specifies the scalar alpha.
C Unchanged on exit.
C
C A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
C k when TRANS = 'N' or 'n', and is n otherwise.
C Before entry with TRANS = 'N' or 'n', the leading n by k
C part of the array A must contain the matrix A, otherwise
C the leading k by n part of the array A must contain the
C matrix A.
C Unchanged on exit.
C
C LDA - INTEGER.
C On entry, LDA specifies the first dimension of A as declared
C in the calling (sub) program. When TRANS = 'N' or 'n'
C then LDA must be at least max( 1, n ), otherwise LDA must
C be at least max( 1, k ).
C Unchanged on exit.
C
C BETA - REAL .
C On entry, BETA specifies the scalar beta.
C Unchanged on exit.
C
C C - COMPLEX array of DIMENSION ( LDC, n ).
C Before entry with UPLO = 'U' or 'u', the leading n by n
C upper triangular part of the array C must contain the upper
C triangular part of the hermitian matrix and the strictly
C lower triangular part of C is not referenced. On exit, the
C upper triangular part of the array C is overwritten by the
C upper triangular part of the updated matrix.
C Before entry with UPLO = 'L' or 'l', the leading n by n
C lower triangular part of the array C must contain the lower
C triangular part of the hermitian matrix and the strictly
C upper triangular part of C is not referenced. On exit, the
C lower triangular part of the array C is overwritten by the
C lower triangular part of the updated matrix.
C Note that the imaginary parts of the diagonal elements need
C not be set, they are assumed to be zero, and on exit they
C are set to zero.
C
C LDC - INTEGER.
C On entry, LDC specifies the first dimension of C as declared
C in the calling (sub) program. LDC must be at least
C max( 1, n ).
C Unchanged on exit.
C
C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
C A set of level 3 basic linear algebra subprograms.
C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
C***ROUTINES CALLED LSAME, XERBLA
C***REVISION HISTORY (YYMMDD)
C 890208 DATE WRITTEN
C 910605 Modified to meet SLATEC prologue standards. Only comment
C lines were modified. (BKS)
C***END PROLOGUE CHERK
C .. Scalar Arguments ..
CHARACTER*1 UPLO, TRANS
INTEGER N, K, LDA, LDC
REAL ALPHA, BETA
C .. Array Arguments ..
COMPLEX A( LDA, * ), C( LDC, * )
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL XERBLA
C .. Intrinsic Functions ..
INTRINSIC CMPLX, CONJG, MAX, REAL
C .. Local Scalars ..
LOGICAL UPPER
INTEGER I, INFO, J, L, NROWA
REAL RTEMP
COMPLEX TEMP
C .. Parameters ..
REAL ONE , ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
C***FIRST EXECUTABLE STATEMENT CHERK
C
C Test the input parameters.
C
IF( LSAME( TRANS, 'N' ) )THEN
NROWA = N
ELSE
NROWA = K
END IF
UPPER = LSAME( UPLO, 'U' )
C
INFO = 0
IF( ( .NOT.UPPER ).AND.
$ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
INFO = 1
ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
$ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN
INFO = 2
ELSE IF( N .LT.0 )THEN
INFO = 3
ELSE IF( K .LT.0 )THEN
INFO = 4
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
INFO = 7
ELSE IF( LDC.LT.MAX( 1, N ) )THEN
INFO = 10
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'CHERK ', INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( ( N.EQ.0 ).OR.
$ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
$ RETURN
C
C And when alpha.eq.zero.
C
IF( ALPHA.EQ.ZERO )THEN
IF( UPPER )THEN
IF( BETA.EQ.ZERO )THEN
DO 20, J = 1, N
DO 10, I = 1, J
C( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40, J = 1, N
DO 30, I = 1, J - 1
C( I, J ) = BETA*C( I, J )
30 CONTINUE
C( J, J ) = BETA*REAL( C( J, J ) )
40 CONTINUE
END IF
ELSE
IF( BETA.EQ.ZERO )THEN
DO 60, J = 1, N
DO 50, I = J, N
C( I, J ) = ZERO
50 CONTINUE
60 CONTINUE
ELSE
DO 80, J = 1, N
C( J, J ) = BETA*REAL( C( J, J ) )
DO 70, I = J + 1, N
C( I, J ) = BETA*C( I, J )
70 CONTINUE
80 CONTINUE
END IF
END IF
RETURN
END IF
C
C Start the operations.
C
IF( LSAME( TRANS, 'N' ) )THEN
C
C Form C := alpha*A*conjg( A' ) + beta*C.
C
IF( UPPER )THEN
DO 130, J = 1, N
IF( BETA.EQ.ZERO )THEN
DO 90, I = 1, J
C( I, J ) = ZERO
90 CONTINUE
ELSE IF( BETA.NE.ONE )THEN
DO 100, I = 1, J - 1
C( I, J ) = BETA*C( I, J )
100 CONTINUE
C( J, J ) = BETA*REAL( C( J, J ) )
END IF
DO 120, L = 1, K
IF( A( J, L ).NE.CMPLX( ZERO ) )THEN
TEMP = ALPHA*CONJG( A( J, L ) )
DO 110, I = 1, J - 1
C( I, J ) = C( I, J ) + TEMP*A( I, L )
110 CONTINUE
C( J, J ) = REAL( C( J, J ) ) +
$ REAL( TEMP*A( I, L ) )
END IF
120 CONTINUE
130 CONTINUE
ELSE
DO 180, J = 1, N
IF( BETA.EQ.ZERO )THEN
DO 140, I = J, N
C( I, J ) = ZERO
140 CONTINUE
ELSE IF( BETA.NE.ONE )THEN
C( J, J ) = BETA*REAL( C( J, J ) )
DO 150, I = J + 1, N
C( I, J ) = BETA*C( I, J )
150 CONTINUE
END IF
DO 170, L = 1, K
IF( A( J, L ).NE.CMPLX( ZERO ) )THEN
TEMP = ALPHA*CONJG( A( J, L ) )
C( J, J ) = REAL( C( J, J ) ) +
$ REAL( TEMP*A( J, L ) )
DO 160, I = J + 1, N
C( I, J ) = C( I, J ) + TEMP*A( I, L )
160 CONTINUE
END IF
170 CONTINUE
180 CONTINUE
END IF
ELSE
C
C Form C := alpha*conjg( A' )*A + beta*C.
C
IF( UPPER )THEN
DO 220, J = 1, N
DO 200, I = 1, J - 1
TEMP = ZERO
DO 190, L = 1, K
TEMP = TEMP + CONJG( A( L, I ) )*A( L, J )
190 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = ALPHA*TEMP
ELSE
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
END IF
200 CONTINUE
RTEMP = ZERO
DO 210, L = 1, K
RTEMP = RTEMP + CONJG( A( L, J ) )*A( L, J )
210 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( J, J ) = ALPHA*RTEMP
ELSE
C( J, J ) = ALPHA*RTEMP + BETA*REAL( C( J, J ) )
END IF
220 CONTINUE
ELSE
DO 260, J = 1, N
RTEMP = ZERO
DO 230, L = 1, K
RTEMP = RTEMP + CONJG( A( L, J ) )*A( L, J )
230 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( J, J ) = ALPHA*RTEMP
ELSE
C( J, J ) = ALPHA*RTEMP + BETA*REAL( C( J, J ) )
END IF
DO 250, I = J + 1, N
TEMP = ZERO
DO 240, L = 1, K
TEMP = TEMP + CONJG( A( L, I ) )*A( L, J )
240 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = ALPHA*TEMP
ELSE
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
END IF
250 CONTINUE
260 CONTINUE
END IF
END IF
C
RETURN
C
C End of CHERK .
C
END