OpenLibm/slatec/chidi.f

235 lines
7.6 KiB
FortranFixed
Raw Normal View History

*DECK CHIDI
SUBROUTINE CHIDI (A, LDA, N, KPVT, DET, INERT, WORK, JOB)
C***BEGIN PROLOGUE CHIDI
C***PURPOSE Compute the determinant, inertia and inverse of a complex
C Hermitian matrix using the factors obtained from CHIFA.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2D1A, D3D1A
C***TYPE COMPLEX (SSIDI-S, DSISI-D, CHIDI-C, CSIDI-C)
C***KEYWORDS DETERMINANT, HERMITIAN, INVERSE, LINEAR ALGEBRA, LINPACK,
C MATRIX
C***AUTHOR Bunch, J., (UCSD)
C***DESCRIPTION
C
C CHIDI computes the determinant, inertia and inverse
C of a complex Hermitian matrix using the factors from CHIFA.
C
C On Entry
C
C A COMPLEX(LDA,N)
C the output from CHIFA.
C
C LDA INTEGER
C the leading dimension of the array A.
C
C N INTEGER
C the order of the matrix A.
C
C KVPT INTEGER(N)
C the pivot vector from CHIFA.
C
C WORK COMPLEX(N)
C work vector. Contents destroyed.
C
C JOB INTEGER
C JOB has the decimal expansion ABC where
C if C .NE. 0, the inverse is computed,
C if B .NE. 0, the determinant is computed,
C if A .NE. 0, the inertia is computed.
C
C For example, JOB = 111 gives all three.
C
C On Return
C
C Variables not requested by JOB are not used.
C
C A contains the upper triangle of the inverse of
C the original matrix. The strict lower triangle
C is never referenced.
C
C DET REAL(2)
C determinant of original matrix.
C Determinant = DET(1) * 10.0**DET(2)
C with 1.0 .LE. ABS(DET(1)) .LT. 10.0
C or DET(1) = 0.0.
C
C INERT INTEGER(3)
C the inertia of the original matrix.
C INERT(1) = number of positive eigenvalues.
C INERT(2) = number of negative eigenvalues.
C INERT(3) = number of zero eigenvalues.
C
C Error Condition
C
C A division by zero may occur if the inverse is requested
C and CHICO has set RCOND .EQ. 0.0
C or CHIFA has set INFO .NE. 0 .
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED CAXPY, CCOPY, CDOTC, CSWAP
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891107 Modified routine equivalence list. (WRB)
C 891107 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE CHIDI
INTEGER LDA,N,JOB
COMPLEX A(LDA,*),WORK(*)
REAL DET(2)
INTEGER KPVT(*),INERT(3)
C
COMPLEX AKKP1,CDOTC,TEMP
REAL TEN,D,T,AK,AKP1
INTEGER J,JB,K,KM1,KS,KSTEP
LOGICAL NOINV,NODET,NOERT
C***FIRST EXECUTABLE STATEMENT CHIDI
NOINV = MOD(JOB,10) .EQ. 0
NODET = MOD(JOB,100)/10 .EQ. 0
NOERT = MOD(JOB,1000)/100 .EQ. 0
C
IF (NODET .AND. NOERT) GO TO 140
IF (NOERT) GO TO 10
INERT(1) = 0
INERT(2) = 0
INERT(3) = 0
10 CONTINUE
IF (NODET) GO TO 20
DET(1) = 1.0E0
DET(2) = 0.0E0
TEN = 10.0E0
20 CONTINUE
T = 0.0E0
DO 130 K = 1, N
D = REAL(A(K,K))
C
C CHECK IF 1 BY 1
C
IF (KPVT(K) .GT. 0) GO TO 50
C
C 2 BY 2 BLOCK
C USE DET (D S) = (D/T * C - T) * T , T = ABS(S)
C (S C)
C TO AVOID UNDERFLOW/OVERFLOW TROUBLES.
C TAKE TWO PASSES THROUGH SCALING. USE T FOR FLAG.
C
IF (T .NE. 0.0E0) GO TO 30
T = ABS(A(K,K+1))
D = (D/T)*REAL(A(K+1,K+1)) - T
GO TO 40
30 CONTINUE
D = T
T = 0.0E0
40 CONTINUE
50 CONTINUE
C
IF (NOERT) GO TO 60
IF (D .GT. 0.0E0) INERT(1) = INERT(1) + 1
IF (D .LT. 0.0E0) INERT(2) = INERT(2) + 1
IF (D .EQ. 0.0E0) INERT(3) = INERT(3) + 1
60 CONTINUE
C
IF (NODET) GO TO 120
DET(1) = D*DET(1)
IF (DET(1) .EQ. 0.0E0) GO TO 110
70 IF (ABS(DET(1)) .GE. 1.0E0) GO TO 80
DET(1) = TEN*DET(1)
DET(2) = DET(2) - 1.0E0
GO TO 70
80 CONTINUE
90 IF (ABS(DET(1)) .LT. TEN) GO TO 100
DET(1) = DET(1)/TEN
DET(2) = DET(2) + 1.0E0
GO TO 90
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
C
C COMPUTE INVERSE(A)
C
IF (NOINV) GO TO 270
K = 1
150 IF (K .GT. N) GO TO 260
KM1 = K - 1
IF (KPVT(K) .LT. 0) GO TO 180
C
C 1 BY 1
C
A(K,K) = CMPLX(1.0E0/REAL(A(K,K)),0.0E0)
IF (KM1 .LT. 1) GO TO 170
CALL CCOPY(KM1,A(1,K),1,WORK,1)
DO 160 J = 1, KM1
A(J,K) = CDOTC(J,A(1,J),1,WORK,1)
CALL CAXPY(J-1,WORK(J),A(1,J),1,A(1,K),1)
160 CONTINUE
A(K,K) = A(K,K)
1 + CMPLX(REAL(CDOTC(KM1,WORK,1,A(1,K),1)),
2 0.0E0)
170 CONTINUE
KSTEP = 1
GO TO 220
180 CONTINUE
C
C 2 BY 2
C
T = ABS(A(K,K+1))
AK = REAL(A(K,K))/T
AKP1 = REAL(A(K+1,K+1))/T
AKKP1 = A(K,K+1)/T
D = T*(AK*AKP1 - 1.0E0)
A(K,K) = CMPLX(AKP1/D,0.0E0)
A(K+1,K+1) = CMPLX(AK/D,0.0E0)
A(K,K+1) = -AKKP1/D
IF (KM1 .LT. 1) GO TO 210
CALL CCOPY(KM1,A(1,K+1),1,WORK,1)
DO 190 J = 1, KM1
A(J,K+1) = CDOTC(J,A(1,J),1,WORK,1)
CALL CAXPY(J-1,WORK(J),A(1,J),1,A(1,K+1),1)
190 CONTINUE
A(K+1,K+1) = A(K+1,K+1)
1 + CMPLX(REAL(CDOTC(KM1,WORK,1,A(1,K+1),
2 1)),0.0E0)
A(K,K+1) = A(K,K+1) + CDOTC(KM1,A(1,K),1,A(1,K+1),1)
CALL CCOPY(KM1,A(1,K),1,WORK,1)
DO 200 J = 1, KM1
A(J,K) = CDOTC(J,A(1,J),1,WORK,1)
CALL CAXPY(J-1,WORK(J),A(1,J),1,A(1,K),1)
200 CONTINUE
A(K,K) = A(K,K)
1 + CMPLX(REAL(CDOTC(KM1,WORK,1,A(1,K),1)),
2 0.0E0)
210 CONTINUE
KSTEP = 2
220 CONTINUE
C
C SWAP
C
KS = ABS(KPVT(K))
IF (KS .EQ. K) GO TO 250
CALL CSWAP(KS,A(1,KS),1,A(1,K),1)
DO 230 JB = KS, K
J = K + KS - JB
TEMP = CONJG(A(J,K))
A(J,K) = CONJG(A(KS,J))
A(KS,J) = TEMP
230 CONTINUE
IF (KSTEP .EQ. 1) GO TO 240
TEMP = A(KS,K+1)
A(KS,K+1) = A(K,K+1)
A(K,K+1) = TEMP
240 CONTINUE
250 CONTINUE
K = K + KSTEP
GO TO 150
260 CONTINUE
270 CONTINUE
RETURN
END