mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
262 lines
8.5 KiB
FortranFixed
262 lines
8.5 KiB
FortranFixed
|
*DECK CHPDI
|
||
|
SUBROUTINE CHPDI (AP, N, KPVT, DET, INERT, WORK, JOB)
|
||
|
C***BEGIN PROLOGUE CHPDI
|
||
|
C***PURPOSE Compute the determinant, inertia and inverse of a complex
|
||
|
C Hermitian matrix stored in packed form using the factors
|
||
|
C obtained from CHPFA.
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2D1A, D3D1A
|
||
|
C***TYPE COMPLEX (SSPDI-S, DSPDI-D, CHPDI-C, DSPDI-C)
|
||
|
C***KEYWORDS DETERMINANT, HERMITIAN, INVERSE, LINEAR ALGEBRA, LINPACK,
|
||
|
C MATRIX, PACKED
|
||
|
C***AUTHOR Bunch, J., (UCSD)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C CHPDI computes the determinant, inertia and inverse
|
||
|
C of a complex Hermitian matrix using the factors from CHPFA,
|
||
|
C where the matrix is stored in packed form.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C AP COMPLEX (N*(N+1)/2)
|
||
|
C the output from CHPFA.
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the matrix A.
|
||
|
C
|
||
|
C KVPT INTEGER(N)
|
||
|
C the pivot vector from CHPFA.
|
||
|
C
|
||
|
C WORK COMPLEX(N)
|
||
|
C work vector. Contents ignored.
|
||
|
C
|
||
|
C JOB INTEGER
|
||
|
C JOB has the decimal expansion ABC where
|
||
|
C if C .NE. 0, the inverse is computed,
|
||
|
C if B .NE. 0, the determinant is computed,
|
||
|
C if A .NE. 0, the inertia is computed.
|
||
|
C
|
||
|
C For example, JOB = 111 gives all three.
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C Variables not requested by JOB are not used.
|
||
|
C
|
||
|
C AP contains the upper triangle of the inverse of
|
||
|
C the original matrix, stored in packed form.
|
||
|
C The columns of the upper triangle are stored
|
||
|
C sequentially in a one-dimensional array.
|
||
|
C
|
||
|
C DET REAL(2)
|
||
|
C determinant of original matrix.
|
||
|
C Determinant = DET(1) * 10.0**DET(2)
|
||
|
C with 1.0 .LE. ABS(DET(1)) .LT. 10.0
|
||
|
C or DET(1) = 0.0.
|
||
|
C
|
||
|
C INERT INTEGER(3)
|
||
|
C the inertia of the original matrix.
|
||
|
C INERT(1) = number of positive eigenvalues.
|
||
|
C INERT(2) = number of negative eigenvalues.
|
||
|
C INERT(3) = number of zero eigenvalues.
|
||
|
C
|
||
|
C Error Condition
|
||
|
C
|
||
|
C A division by zero will occur if the inverse is requested
|
||
|
C and CHPCO has set RCOND .EQ. 0.0
|
||
|
C or CHPFA has set INFO .NE. 0 .
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED CAXPY, CCOPY, CDOTC, CSWAP
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 891107 Modified routine equivalence list. (WRB)
|
||
|
C 891107 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE CHPDI
|
||
|
INTEGER N,JOB
|
||
|
COMPLEX AP(*),WORK(*)
|
||
|
REAL DET(2)
|
||
|
INTEGER KPVT(*),INERT(3)
|
||
|
C
|
||
|
COMPLEX AKKP1,CDOTC,TEMP
|
||
|
REAL TEN,D,T,AK,AKP1
|
||
|
INTEGER IJ,IK,IKP1,IKS,J,JB,JK,JKP1
|
||
|
INTEGER K,KK,KKP1,KM1,KS,KSJ,KSKP1,KSTEP
|
||
|
LOGICAL NOINV,NODET,NOERT
|
||
|
C***FIRST EXECUTABLE STATEMENT CHPDI
|
||
|
NOINV = MOD(JOB,10) .EQ. 0
|
||
|
NODET = MOD(JOB,100)/10 .EQ. 0
|
||
|
NOERT = MOD(JOB,1000)/100 .EQ. 0
|
||
|
C
|
||
|
IF (NODET .AND. NOERT) GO TO 140
|
||
|
IF (NOERT) GO TO 10
|
||
|
INERT(1) = 0
|
||
|
INERT(2) = 0
|
||
|
INERT(3) = 0
|
||
|
10 CONTINUE
|
||
|
IF (NODET) GO TO 20
|
||
|
DET(1) = 1.0E0
|
||
|
DET(2) = 0.0E0
|
||
|
TEN = 10.0E0
|
||
|
20 CONTINUE
|
||
|
T = 0.0E0
|
||
|
IK = 0
|
||
|
DO 130 K = 1, N
|
||
|
KK = IK + K
|
||
|
D = REAL(AP(KK))
|
||
|
C
|
||
|
C CHECK IF 1 BY 1
|
||
|
C
|
||
|
IF (KPVT(K) .GT. 0) GO TO 50
|
||
|
C
|
||
|
C 2 BY 2 BLOCK
|
||
|
C USE DET (D S) = (D/T * C - T) * T , T = ABS(S)
|
||
|
C (S C)
|
||
|
C TO AVOID UNDERFLOW/OVERFLOW TROUBLES.
|
||
|
C TAKE TWO PASSES THROUGH SCALING. USE T FOR FLAG.
|
||
|
C
|
||
|
IF (T .NE. 0.0E0) GO TO 30
|
||
|
IKP1 = IK + K
|
||
|
KKP1 = IKP1 + K
|
||
|
T = ABS(AP(KKP1))
|
||
|
D = (D/T)*REAL(AP(KKP1+1)) - T
|
||
|
GO TO 40
|
||
|
30 CONTINUE
|
||
|
D = T
|
||
|
T = 0.0E0
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
C
|
||
|
IF (NOERT) GO TO 60
|
||
|
IF (D .GT. 0.0E0) INERT(1) = INERT(1) + 1
|
||
|
IF (D .LT. 0.0E0) INERT(2) = INERT(2) + 1
|
||
|
IF (D .EQ. 0.0E0) INERT(3) = INERT(3) + 1
|
||
|
60 CONTINUE
|
||
|
C
|
||
|
IF (NODET) GO TO 120
|
||
|
DET(1) = D*DET(1)
|
||
|
IF (DET(1) .EQ. 0.0E0) GO TO 110
|
||
|
70 IF (ABS(DET(1)) .GE. 1.0E0) GO TO 80
|
||
|
DET(1) = TEN*DET(1)
|
||
|
DET(2) = DET(2) - 1.0E0
|
||
|
GO TO 70
|
||
|
80 CONTINUE
|
||
|
90 IF (ABS(DET(1)) .LT. TEN) GO TO 100
|
||
|
DET(1) = DET(1)/TEN
|
||
|
DET(2) = DET(2) + 1.0E0
|
||
|
GO TO 90
|
||
|
100 CONTINUE
|
||
|
110 CONTINUE
|
||
|
120 CONTINUE
|
||
|
IK = IK + K
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
C
|
||
|
C COMPUTE INVERSE(A)
|
||
|
C
|
||
|
IF (NOINV) GO TO 270
|
||
|
K = 1
|
||
|
IK = 0
|
||
|
150 IF (K .GT. N) GO TO 260
|
||
|
KM1 = K - 1
|
||
|
KK = IK + K
|
||
|
IKP1 = IK + K
|
||
|
KKP1 = IKP1 + K
|
||
|
IF (KPVT(K) .LT. 0) GO TO 180
|
||
|
C
|
||
|
C 1 BY 1
|
||
|
C
|
||
|
AP(KK) = CMPLX(1.0E0/REAL(AP(KK)),0.0E0)
|
||
|
IF (KM1 .LT. 1) GO TO 170
|
||
|
CALL CCOPY(KM1,AP(IK+1),1,WORK,1)
|
||
|
IJ = 0
|
||
|
DO 160 J = 1, KM1
|
||
|
JK = IK + J
|
||
|
AP(JK) = CDOTC(J,AP(IJ+1),1,WORK,1)
|
||
|
CALL CAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IK+1),1)
|
||
|
IJ = IJ + J
|
||
|
160 CONTINUE
|
||
|
AP(KK) = AP(KK)
|
||
|
1 + CMPLX(REAL(CDOTC(KM1,WORK,1,AP(IK+1),1)),
|
||
|
2 0.0E0)
|
||
|
170 CONTINUE
|
||
|
KSTEP = 1
|
||
|
GO TO 220
|
||
|
180 CONTINUE
|
||
|
C
|
||
|
C 2 BY 2
|
||
|
C
|
||
|
T = ABS(AP(KKP1))
|
||
|
AK = REAL(AP(KK))/T
|
||
|
AKP1 = REAL(AP(KKP1+1))/T
|
||
|
AKKP1 = AP(KKP1)/T
|
||
|
D = T*(AK*AKP1 - 1.0E0)
|
||
|
AP(KK) = CMPLX(AKP1/D,0.0E0)
|
||
|
AP(KKP1+1) = CMPLX(AK/D,0.0E0)
|
||
|
AP(KKP1) = -AKKP1/D
|
||
|
IF (KM1 .LT. 1) GO TO 210
|
||
|
CALL CCOPY(KM1,AP(IKP1+1),1,WORK,1)
|
||
|
IJ = 0
|
||
|
DO 190 J = 1, KM1
|
||
|
JKP1 = IKP1 + J
|
||
|
AP(JKP1) = CDOTC(J,AP(IJ+1),1,WORK,1)
|
||
|
CALL CAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IKP1+1),1)
|
||
|
IJ = IJ + J
|
||
|
190 CONTINUE
|
||
|
AP(KKP1+1) = AP(KKP1+1)
|
||
|
1 + CMPLX(REAL(CDOTC(KM1,WORK,1,
|
||
|
2 AP(IKP1+1),1)),0.0E0)
|
||
|
AP(KKP1) = AP(KKP1)
|
||
|
1 + CDOTC(KM1,AP(IK+1),1,AP(IKP1+1),1)
|
||
|
CALL CCOPY(KM1,AP(IK+1),1,WORK,1)
|
||
|
IJ = 0
|
||
|
DO 200 J = 1, KM1
|
||
|
JK = IK + J
|
||
|
AP(JK) = CDOTC(J,AP(IJ+1),1,WORK,1)
|
||
|
CALL CAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IK+1),1)
|
||
|
IJ = IJ + J
|
||
|
200 CONTINUE
|
||
|
AP(KK) = AP(KK)
|
||
|
1 + CMPLX(REAL(CDOTC(KM1,WORK,1,AP(IK+1),1)),
|
||
|
2 0.0E0)
|
||
|
210 CONTINUE
|
||
|
KSTEP = 2
|
||
|
220 CONTINUE
|
||
|
C
|
||
|
C SWAP
|
||
|
C
|
||
|
KS = ABS(KPVT(K))
|
||
|
IF (KS .EQ. K) GO TO 250
|
||
|
IKS = (KS*(KS - 1))/2
|
||
|
CALL CSWAP(KS,AP(IKS+1),1,AP(IK+1),1)
|
||
|
KSJ = IK + KS
|
||
|
DO 230 JB = KS, K
|
||
|
J = K + KS - JB
|
||
|
JK = IK + J
|
||
|
TEMP = CONJG(AP(JK))
|
||
|
AP(JK) = CONJG(AP(KSJ))
|
||
|
AP(KSJ) = TEMP
|
||
|
KSJ = KSJ - (J - 1)
|
||
|
230 CONTINUE
|
||
|
IF (KSTEP .EQ. 1) GO TO 240
|
||
|
KSKP1 = IKP1 + KS
|
||
|
TEMP = AP(KSKP1)
|
||
|
AP(KSKP1) = AP(KKP1)
|
||
|
AP(KKP1) = TEMP
|
||
|
240 CONTINUE
|
||
|
250 CONTINUE
|
||
|
IK = IK + K
|
||
|
IF (KSTEP .EQ. 2) IK = IK + K + 1
|
||
|
K = K + KSTEP
|
||
|
GO TO 150
|
||
|
260 CONTINUE
|
||
|
270 CONTINUE
|
||
|
RETURN
|
||
|
END
|