mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
197 lines
5 KiB
FortranFixed
197 lines
5 KiB
FortranFixed
|
*DECK CHPSL
|
||
|
SUBROUTINE CHPSL (AP, N, KPVT, B)
|
||
|
C***BEGIN PROLOGUE CHPSL
|
||
|
C***PURPOSE Solve a complex Hermitian system using factors obtained
|
||
|
C from CHPFA.
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2D1A
|
||
|
C***TYPE COMPLEX (SSPSL-S, DSPSL-D, CHPSL-C, CSPSL-C)
|
||
|
C***KEYWORDS HERMITIAN, LINEAR ALGEBRA, LINPACK, MATRIX, PACKED, SOLVE
|
||
|
C***AUTHOR Bunch, J., (UCSD)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C CHISL solves the complex Hermitian system
|
||
|
C A * X = B
|
||
|
C using the factors computed by CHPFA.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C AP COMPLEX(N*(N+1)/2)
|
||
|
C the output from CHPFA.
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the matrix A .
|
||
|
C
|
||
|
C KVPT INTEGER(N)
|
||
|
C the pivot vector from CHPFA.
|
||
|
C
|
||
|
C B COMPLEX(N)
|
||
|
C the right hand side vector.
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C B the solution vector X .
|
||
|
C
|
||
|
C Error Condition
|
||
|
C
|
||
|
C A division by zero may occur if CHPCO has set RCOND .EQ. 0.0
|
||
|
C or CHPFA has set INFO .NE. 0 .
|
||
|
C
|
||
|
C To compute INVERSE(A) * C where C is a matrix
|
||
|
C with P columns
|
||
|
C CALL CHPFA(AP,N,KVPT,INFO)
|
||
|
C IF (INFO .NE. 0) GO TO ...
|
||
|
C DO 10 J = 1, P
|
||
|
C CALL CHPSL(AP,N,KVPT,C(1,J))
|
||
|
C 10 CONTINUE
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED CAXPY, CDOTC
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 891107 Modified routine equivalence list. (WRB)
|
||
|
C 891107 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE CHPSL
|
||
|
INTEGER N,KPVT(*)
|
||
|
COMPLEX AP(*),B(*)
|
||
|
C
|
||
|
COMPLEX AK,AKM1,BK,BKM1,CDOTC,DENOM,TEMP
|
||
|
INTEGER IK,IKM1,IKP1,K,KK,KM1K,KM1KM1,KP
|
||
|
C
|
||
|
C LOOP BACKWARD APPLYING THE TRANSFORMATIONS AND
|
||
|
C D INVERSE TO B.
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT CHPSL
|
||
|
K = N
|
||
|
IK = (N*(N - 1))/2
|
||
|
10 IF (K .EQ. 0) GO TO 80
|
||
|
KK = IK + K
|
||
|
IF (KPVT(K) .LT. 0) GO TO 40
|
||
|
C
|
||
|
C 1 X 1 PIVOT BLOCK.
|
||
|
C
|
||
|
IF (K .EQ. 1) GO TO 30
|
||
|
KP = KPVT(K)
|
||
|
IF (KP .EQ. K) GO TO 20
|
||
|
C
|
||
|
C INTERCHANGE.
|
||
|
C
|
||
|
TEMP = B(K)
|
||
|
B(K) = B(KP)
|
||
|
B(KP) = TEMP
|
||
|
20 CONTINUE
|
||
|
C
|
||
|
C APPLY THE TRANSFORMATION.
|
||
|
C
|
||
|
CALL CAXPY(K-1,B(K),AP(IK+1),1,B(1),1)
|
||
|
30 CONTINUE
|
||
|
C
|
||
|
C APPLY D INVERSE.
|
||
|
C
|
||
|
B(K) = B(K)/AP(KK)
|
||
|
K = K - 1
|
||
|
IK = IK - K
|
||
|
GO TO 70
|
||
|
40 CONTINUE
|
||
|
C
|
||
|
C 2 X 2 PIVOT BLOCK.
|
||
|
C
|
||
|
IKM1 = IK - (K - 1)
|
||
|
IF (K .EQ. 2) GO TO 60
|
||
|
KP = ABS(KPVT(K))
|
||
|
IF (KP .EQ. K - 1) GO TO 50
|
||
|
C
|
||
|
C INTERCHANGE.
|
||
|
C
|
||
|
TEMP = B(K-1)
|
||
|
B(K-1) = B(KP)
|
||
|
B(KP) = TEMP
|
||
|
50 CONTINUE
|
||
|
C
|
||
|
C APPLY THE TRANSFORMATION.
|
||
|
C
|
||
|
CALL CAXPY(K-2,B(K),AP(IK+1),1,B(1),1)
|
||
|
CALL CAXPY(K-2,B(K-1),AP(IKM1+1),1,B(1),1)
|
||
|
60 CONTINUE
|
||
|
C
|
||
|
C APPLY D INVERSE.
|
||
|
C
|
||
|
KM1K = IK + K - 1
|
||
|
KK = IK + K
|
||
|
AK = AP(KK)/CONJG(AP(KM1K))
|
||
|
KM1KM1 = IKM1 + K - 1
|
||
|
AKM1 = AP(KM1KM1)/AP(KM1K)
|
||
|
BK = B(K)/CONJG(AP(KM1K))
|
||
|
BKM1 = B(K-1)/AP(KM1K)
|
||
|
DENOM = AK*AKM1 - 1.0E0
|
||
|
B(K) = (AKM1*BK - BKM1)/DENOM
|
||
|
B(K-1) = (AK*BKM1 - BK)/DENOM
|
||
|
K = K - 2
|
||
|
IK = IK - (K + 1) - K
|
||
|
70 CONTINUE
|
||
|
GO TO 10
|
||
|
80 CONTINUE
|
||
|
C
|
||
|
C LOOP FORWARD APPLYING THE TRANSFORMATIONS.
|
||
|
C
|
||
|
K = 1
|
||
|
IK = 0
|
||
|
90 IF (K .GT. N) GO TO 160
|
||
|
IF (KPVT(K) .LT. 0) GO TO 120
|
||
|
C
|
||
|
C 1 X 1 PIVOT BLOCK.
|
||
|
C
|
||
|
IF (K .EQ. 1) GO TO 110
|
||
|
C
|
||
|
C APPLY THE TRANSFORMATION.
|
||
|
C
|
||
|
B(K) = B(K) + CDOTC(K-1,AP(IK+1),1,B(1),1)
|
||
|
KP = KPVT(K)
|
||
|
IF (KP .EQ. K) GO TO 100
|
||
|
C
|
||
|
C INTERCHANGE.
|
||
|
C
|
||
|
TEMP = B(K)
|
||
|
B(K) = B(KP)
|
||
|
B(KP) = TEMP
|
||
|
100 CONTINUE
|
||
|
110 CONTINUE
|
||
|
IK = IK + K
|
||
|
K = K + 1
|
||
|
GO TO 150
|
||
|
120 CONTINUE
|
||
|
C
|
||
|
C 2 X 2 PIVOT BLOCK.
|
||
|
C
|
||
|
IF (K .EQ. 1) GO TO 140
|
||
|
C
|
||
|
C APPLY THE TRANSFORMATION.
|
||
|
C
|
||
|
B(K) = B(K) + CDOTC(K-1,AP(IK+1),1,B(1),1)
|
||
|
IKP1 = IK + K
|
||
|
B(K+1) = B(K+1) + CDOTC(K-1,AP(IKP1+1),1,B(1),1)
|
||
|
KP = ABS(KPVT(K))
|
||
|
IF (KP .EQ. K) GO TO 130
|
||
|
C
|
||
|
C INTERCHANGE.
|
||
|
C
|
||
|
TEMP = B(K)
|
||
|
B(K) = B(KP)
|
||
|
B(KP) = TEMP
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
IK = IK + K + K + 1
|
||
|
K = K + 2
|
||
|
150 CONTINUE
|
||
|
GO TO 90
|
||
|
160 CONTINUE
|
||
|
RETURN
|
||
|
END
|