mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
143 lines
4.7 KiB
FortranFixed
143 lines
4.7 KiB
FortranFixed
|
*DECK COMHES
|
||
|
SUBROUTINE COMHES (NM, N, LOW, IGH, AR, AI, INT)
|
||
|
C***BEGIN PROLOGUE COMHES
|
||
|
C***PURPOSE Reduce a complex general matrix to complex upper Hessenberg
|
||
|
C form using stabilized elementary similarity
|
||
|
C transformations.
|
||
|
C***LIBRARY SLATEC (EISPACK)
|
||
|
C***CATEGORY D4C1B2
|
||
|
C***TYPE COMPLEX (ELMHES-S, COMHES-C)
|
||
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
||
|
C***AUTHOR Smith, B. T., et al.
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This subroutine is a translation of the ALGOL procedure COMHES,
|
||
|
C NUM. MATH. 12, 349-368(1968) by Martin and Wilkinson.
|
||
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).
|
||
|
C
|
||
|
C Given a COMPLEX GENERAL matrix, this subroutine
|
||
|
C reduces a submatrix situated in rows and columns
|
||
|
C LOW through IGH to upper Hessenberg form by
|
||
|
C stabilized elementary similarity transformations.
|
||
|
C
|
||
|
C On INPUT
|
||
|
C
|
||
|
C NM must be set to the row dimension of the two-dimensional
|
||
|
C array parameters, AR and AI, as declared in the calling
|
||
|
C program dimension statement. NM is an INTEGER variable.
|
||
|
C
|
||
|
C N is the order of the matrix A=(AR,AI). N is an INTEGER
|
||
|
C variable. N must be less than or equal to NM.
|
||
|
C
|
||
|
C LOW and IGH are two INTEGER variables determined by the
|
||
|
C balancing subroutine CBAL. If CBAL has not been used,
|
||
|
C set LOW=1 and IGH equal to the order of the matrix, N.
|
||
|
C
|
||
|
C AR and AI contain the real and imaginary parts, respectively,
|
||
|
C of the complex input matrix. AR and AI are two-dimensional
|
||
|
C REAL arrays, dimensioned AR(NM,N) and AI(NM,N).
|
||
|
C
|
||
|
C On OUTPUT
|
||
|
C
|
||
|
C AR and AI contain the real and imaginary parts, respectively,
|
||
|
C of the upper Hessenberg matrix. The multipliers which
|
||
|
C were used in the reduction are stored in the remaining
|
||
|
C triangles under the Hessenberg matrix.
|
||
|
C
|
||
|
C INT contains information on the rows and columns
|
||
|
C interchanged in the reduction. Only elements LOW through
|
||
|
C IGH are used. INT is a one-dimensional INTEGER array,
|
||
|
C dimensioned INT(IGH).
|
||
|
C
|
||
|
C Calls CDIV for complex division.
|
||
|
C
|
||
|
C Questions and comments should be directed to B. S. Garbow,
|
||
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
||
|
C ------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
||
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
||
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
||
|
C 1976.
|
||
|
C***ROUTINES CALLED CDIV
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 760101 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE COMHES
|
||
|
C
|
||
|
INTEGER I,J,M,N,LA,NM,IGH,KP1,LOW,MM1,MP1
|
||
|
REAL AR(NM,*),AI(NM,*)
|
||
|
REAL XR,XI,YR,YI
|
||
|
INTEGER INT(*)
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT COMHES
|
||
|
LA = IGH - 1
|
||
|
KP1 = LOW + 1
|
||
|
IF (LA .LT. KP1) GO TO 200
|
||
|
C
|
||
|
DO 180 M = KP1, LA
|
||
|
MM1 = M - 1
|
||
|
XR = 0.0E0
|
||
|
XI = 0.0E0
|
||
|
I = M
|
||
|
C
|
||
|
DO 100 J = M, IGH
|
||
|
IF (ABS(AR(J,MM1)) + ABS(AI(J,MM1))
|
||
|
1 .LE. ABS(XR) + ABS(XI)) GO TO 100
|
||
|
XR = AR(J,MM1)
|
||
|
XI = AI(J,MM1)
|
||
|
I = J
|
||
|
100 CONTINUE
|
||
|
C
|
||
|
INT(M) = I
|
||
|
IF (I .EQ. M) GO TO 130
|
||
|
C .......... INTERCHANGE ROWS AND COLUMNS OF AR AND AI ..........
|
||
|
DO 110 J = MM1, N
|
||
|
YR = AR(I,J)
|
||
|
AR(I,J) = AR(M,J)
|
||
|
AR(M,J) = YR
|
||
|
YI = AI(I,J)
|
||
|
AI(I,J) = AI(M,J)
|
||
|
AI(M,J) = YI
|
||
|
110 CONTINUE
|
||
|
C
|
||
|
DO 120 J = 1, IGH
|
||
|
YR = AR(J,I)
|
||
|
AR(J,I) = AR(J,M)
|
||
|
AR(J,M) = YR
|
||
|
YI = AI(J,I)
|
||
|
AI(J,I) = AI(J,M)
|
||
|
AI(J,M) = YI
|
||
|
120 CONTINUE
|
||
|
C .......... END INTERCHANGE ..........
|
||
|
130 IF (XR .EQ. 0.0E0 .AND. XI .EQ. 0.0E0) GO TO 180
|
||
|
MP1 = M + 1
|
||
|
C
|
||
|
DO 160 I = MP1, IGH
|
||
|
YR = AR(I,MM1)
|
||
|
YI = AI(I,MM1)
|
||
|
IF (YR .EQ. 0.0E0 .AND. YI .EQ. 0.0E0) GO TO 160
|
||
|
CALL CDIV(YR,YI,XR,XI,YR,YI)
|
||
|
AR(I,MM1) = YR
|
||
|
AI(I,MM1) = YI
|
||
|
C
|
||
|
DO 140 J = M, N
|
||
|
AR(I,J) = AR(I,J) - YR * AR(M,J) + YI * AI(M,J)
|
||
|
AI(I,J) = AI(I,J) - YR * AI(M,J) - YI * AR(M,J)
|
||
|
140 CONTINUE
|
||
|
C
|
||
|
DO 150 J = 1, IGH
|
||
|
AR(J,M) = AR(J,M) + YR * AR(J,I) - YI * AI(J,I)
|
||
|
AI(J,M) = AI(J,M) + YR * AI(J,I) + YI * AR(J,I)
|
||
|
150 CONTINUE
|
||
|
C
|
||
|
160 CONTINUE
|
||
|
C
|
||
|
180 CONTINUE
|
||
|
C
|
||
|
200 RETURN
|
||
|
END
|